当前位置:文档之家› 高考物理数学物理法模拟试题及解析

高考物理数学物理法模拟试题及解析

高考物理数学物理法模拟试题及解析一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。

两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。

已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。

求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。

【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4Cn == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πm T qB=,1B 22πn m T n qB =解得运动时间之比为AA 2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-3.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为37︒,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin ︒=,4cos375︒=,3374tan ︒=,4373cot ︒=)【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N ===oBO 绳上受到的拉力为1cot 37800OB F F G N ===o若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.4.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。

已知磁场的磁感应强度大小为,不计带电粒子的重力。

求: (1)带电粒子的比荷; (2)C 点的坐标。

【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ=== 解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。

5.如图所示,质量为m=1kg 的物块与竖直墙面间动摩擦因数为=0.5,从t=0的时刻开始用恒力F 斜向上推物块,F 与墙面间夹角=37°,在t=0的时刻物块速度为0.(1)若F=12.5N ,墙面对物块的静摩擦力多大? (2)若F=30N ,物块沿墙面向上滑动的加速度多大?(3)若要物块保持静止,F 至少应为多大?(假设最大静摩擦力等于同样正压力时的滑动摩擦力,F 的计算结果保留两位有效数字)【答案】(1)0f =(2)25/a m s =(3)9.1F N = 【解析】试题分析:(1)设f 向上,37Fcos f mg ︒+=得0f =(2)根据牛顿第二定律可得cos37sin 37F F mg ma μ︒-︒-=,得25/a m s =(3)当物块即将下滑时,静摩擦最大且向上,cos37sin 37F F mg μ︒+︒=,得9.1F N =考点:考查了摩擦力,牛顿第二定律【名师点睛】在计算摩擦力时,首先需要弄清楚物体受到的是静摩擦力还是滑动摩擦力,如果是静摩擦力,其大小取决于与它反方向上的平衡力大小,与接触面间的正压力大小无关,如果是滑动摩擦力,则根据公式F N μ=去计算6.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。

如图所示,自行车尾灯左侧面切割成角反射器阵列,为简化起见,假设角反射器的一个平面平行于纸面,另两个平面均与尾灯右侧面夹45o 角,且只考虑纸面内的入射光线。

(1)为使垂直于尾灯右侧面入射的光线在左侧面发生两次全反射后沿原方向返回,尾灯材料的折射率要满足什么条件?(2)若尾灯材料的折射率2n =,光线从右侧面以θ角入射,且能在左侧面发生两次全反射,求sin θ满足的条件。

【答案】(1) 1.414n ≥;(2)sin 2sin15θ≤o 【解析】 【详解】(1)垂直尾灯右侧面入射的光线恰好发生全发射时,由折射定律minsin 90sin 45n =oo① 解得min 2 1.414n ==②故尾灯材料的折射率1.414n ≥(2)尾灯材料折射率2n =其临界角满足1sin C n =③ 30C =o光线以θ角入射,光路如图所示设右侧面折射角为β,要发生第一次全反射,有2C ∠≥④要发生第二次全反射,有4C ∠≥⑤解得015β≤≤o ⑥由折射定律sin sin n θβ=⑦ 解得sin 2sin15θ≤o ⑧7.如图,O 1O 2为经过球形透明体的直线,平行光束沿O 1O 2方向照射到透明体上。

已知透明体的半径为R ,真空中的光速为c 。

(1)不考虑光在球内的反射,若光通过透明体的最长时间为t ,求透明体材料的折射率; (2)若透明体材料的折射率为2,求以45°的入射角射到A 点的光,通过透明体后与O 1O 2的交点到球心O 的距离。

【答案】(1)2vtn R=;2R 。

【解析】 【详解】(1)光在透明体内的最长路径为2R ,不考虑光在球内的反射,则有c v n=2Rtv=透明体材料的折射率2vtnR=;(2)该光线的传播路径如图,入射角i=45°,折射率为n=2,根据折射定律sinsininr=,则折射角r=30°光从B点射出时的出射角为45°,由几何关系知,∠BOC=15°,∠BCO=30°,∠CBO=135°,由正弦定理,有sin30sin135OCR=︒︒解得以45°的入射角射到A点的光,通过透明体后与O1O2的交点到球心O的距离2OC R=。

8.如图所示,电流表A视为理想电表,已知定值电阻R0=4Ω,滑动变阻器R阻值范围为0~10Ω,电源的电动势E=6V.闭合开关S,当R=3Ω时,电流表的读数I=0.5A。

(1)求电源的内阻。

(2)当滑动变阻器R为多大时,电源的总功率最大?最大值P m是多少?【答案】(1)5Ω;(2)当滑动变阻器R为0时,电源的总功率最大,最大值P m是4W。

【解析】【分析】【详解】(1)电源的电动势E=6V.闭合开关S,当R=3Ω时,电流表的读数I=0.5A,根据闭合电路欧姆定律可知:EIR R r=++得:r=5Ω(2)电源的总功率P=IE得:20EP R R r=++当R =0Ω,P最大,最大值为m P ,则有:4m P =W9.如图所示,是两对接的轨道,两轨道与水平的夹角均为30α=o ,左轨道光滑,右轨道粗糙。

一质点自左轨道上距O 点L 0处从静止起滑下,当质点第二次返回到左轨道并达到最高点时,它离O 点的距离为3L ,两轨道对接处有一个很小的圆弧,质点与轨道不会发生碰撞,求质点与右轨道的动摩擦因数。

【答案】0.155 【解析】 【分析】 【详解】 如图所示小球从h 1到h 2,由动能定理()212cos 0sin h mg h h mg μαα--⋅= 解得2111cot h h μα=+⋅小球从h 2到h 3,由动能定理()232cot 0mg h h mg h μα--⋅=解得32(1cot )h h μα=-小球从h 3到h 4,可得4311cot h h μα=+⋅小球从h 4到h 5,可得54(1cot )h h μα=-联立解得2512(1cot )(1cot )h h μαμα-⋅=+⋅ 据题意知153h h =解得 31tan 0.15531μα-==+ 10.质量为M 的木楔倾角为θ,在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.如果用与木楔斜面成α角的力F 拉着木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值;(2)当α=θ时,木楔对水平面的摩擦力是多大?【答案】(1)mg sin 2θ (2)12mg sin 4θ 【解析】【分析】【详解】 木块在木楔斜面上匀速向下运动时,有mg sin θ=μmg cos θ即μ=tan θ.(1)木块在力F 作用下沿斜面向上匀速运动,有F cos α=mg sin θ+F fF sin α+F N =mg cos θF f =μF N解得F =2sin cos sin θαμα+mg =2sin cos cos cos sin sin θθθαθ+mg a =sin 2cos()θθα-mg 则当α=θ时,F 有最小值,为F min=mg sin2θ.(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F的水平分力,即F f=F cos(α+θ)当α=θ时,F取最小值mg sin 2θ,F fm=F min cos2θ=mg·sin 2θcos2θ=12mg sin4θ.11.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B 点.水平桌面右侧有一竖直放置的轨道MNP,其形状为半径R=1.0m圆环剪去了左上角120°的圆弧,MN为其竖直直径,P点到桌面的数值距离是h=2.4m.用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块通过B点后做匀变速运动,其位移与时间的关系为x=6t-2t2,物块飞离桌面后恰好由P点沿切线落入圆轨道(不计空气阻力,g取10m/s2).求:⑴物块m2过B点时的瞬时速度v B及与桌面间的滑动摩擦因数μ;⑵若轨道MNP光滑,物块m2经过轨道最低点N时对轨道的压力F N;⑶若物块m2刚好能到达轨道最高点M,则释放m2后整个运动过程中其克服摩擦力做的功W.【答案】⑴v B=6m/s,μ=0.4;⑵F N=16.8N;⑶W=8.0J【解析】试题分析:⑴由题意质量为m2的物块将弹簧缓慢压缩到C点释放,物块通过B点后做匀变速运动,其位移与时间的关系为x=6t-2t2可知,物块m2过B点时的瞬时速度为:v B=6m/s,加速度为:a=-4m/s2①物块离开B点后在桌面上受重力m2g、桌面的支持力N和滑动摩擦力f作用,根据牛顿第二定律可知,在水平方向上有:-f=m2a②在竖直方向上有:N-m2g=0③根据滑动摩擦定律有:f=μN ④由①②③④式联立解得:μ=ag=0.4⑵物块从D点离开桌面后做平抛运动,设至P点时速度在竖直方向上的分量为v y,则在竖直方向上,根据自由落体运动规律有:h=22yvg⑤因物块由P 点沿切线落入圆轨道,由几何关系和物块水平方向做匀速运动的规律可知:v y =v D tan60° ⑥物块由D 运动至N 的过程中,只有重力做功,根据动能定理有:m 2g(h +R -Rcos60°)=2212N m v -2212D m v ⑦ 在N 点处,物块受重力m 2g 和圆轨道的支持力F N ′作用,根据牛顿第二定律有:F N ′-m 2g =22N v m R⑧ 根据牛顿第三定律可知,物块m 2经过轨道最低点N 时对轨道的压力F N =F N ′ ⑨ 由⑤⑥⑦⑧⑨式联立解得:F N =2212(1)tan 60h m g R+︒+m 2g(3-2cos60°)=16.8N ⑶设CB 距离为x 1,BD 距离为x 2,在物块m 1由C 运动至B 的过程中,根据功能关系有:E p =μm 1gx 1⑩在物块m 2由C 运动至B 的过程中,根据功能关系有:E p =μm 2gx 1+2212B m v ⑪ 在物块m 2由B 运动至D 的过程中,根据动能定理有:-μm 2gx 2=2212D m v -2212B m v ⑫ 由于物块m 2恰好通过圆轨道的最高点M ,设通过速度为v M ,根据牛顿第二定律有:m 2g =22M v m R⑬ 设物块m 2运动至P 点时的速度为v P ,在m 2由P 运动至M 的过程中,克服摩擦力做功为W 3,根据动能定理有:-m 2g(R +Rcos60°)-W 3=2212M m v -2212P m v ⑭ 根据几何关系可知:v P =sin 60yv ︒⑮释放m 2后整个运动过程中其克服摩擦力做的功为:W =μm 2gx 1+μm 2gx 2+W 3⑯ 由①⑤⑥⑩⑪⑫⑬⑭⑮⑯式联立解得:W =212122()B m m v m m -+m 2gh(21sin 60︒-21tan 60︒)-m 2gR(32+cos60°) 代入数据解得:W =7.2J +4.8J -4.0J =8.0J考点:本题综合考查了匀变速直线运动规律、牛顿运动定律、平抛运动规律、运动的合成与分解、动能定理、功能关系的应用问题,属于较难题.12.如图所示,摩托车做腾跃特技表演,沿曲面冲上高0.8m h =顶部水平高台,接着以03m/s v =水平速度离开平台,落至地面A 点时恰能无碰撞地沿圆弧切线切入竖直光滑圆弧AOB 轨道,滑到最低点O 时速度大小6m/s 。

相关主题