当前位置:文档之家› 紧固件磷化处理的发展

紧固件磷化处理的发展

紧固件磷化处理的发展磷化处理就是将金属浸在由磷酸、磷酸盐和其他成分组成的磷化液中,经过化学作用而在金属表面生成一种不溶性的磷酸盐层,俗称磷化膜。

磷化膜主要由磷酸铁、锌、锰、钙等组成,厚度一般在5~20μm颜色一般由暗灰色到黑灰色,它的基体结合牢固,具有良好的润滑性、耐蚀性及较高的电绝缘性等。

磷化处理所需设备简单,操做方便,成本低,生产效率高,被广泛地应用于机械、车辆、船舶、航空航天及家电等行业。

近年来,紧固件行业迅猛发展,越来越重视紧固件表面处理技术,为此,磷化处理也得到极大的发展。

①磷化处理温度由高温向中温、低温、常温发展。

一般情况下,高温磷化工艺形成的磷化膜结晶粗大,膜厚,磷化中产生的沉渣很多,消耗的热能大,挂灰严重。

中温、低温、常温磷化形成的磷化膜均匀致密、膜薄,能耗低,物料消耗小。

②磷化工艺向简单化发展。

有的磷化产品可直接刷涂,如“四合一”、“三合一”等常温磷化产品。

有的简化了工艺流程,磷化、钝化并为一道工序,而且产品的品质技术指标仍能达到、甚至有的指标超过了国家标准。

③磷化产品组分复杂化。

这样提高了磷化的品质,降低了磷化温度,加强了磷化工作液的稳定性。

④减少污染、降低成本。

重点解决磷化产品中的亚硝酸盐、重金属、磷酸盐、高温、酸雾给环境造成的污染,降低了为改善环境所付出的成本。

磷化工艺的确定,主要是以下两个方面。

第一,优选磷酸液。

磷化膜的品质优劣主要表现在晶体粗细和致密程度、表面有无沉淀物及膜厚等方面,它们的差异直接影响磷化膜的品质。

目前普遍采用磷化膜主要由铁系、锌系、锰系、锌钙系等磷酸盐溶液进行磷化,其中锌钙系性能最优良。

第二,控制工艺参数。

关键要控制磷化温度(25~40℃),时间(3~20min),促进剂含量(3~5气点)及总酸度(20~40点)和游离酸度(0.8~3点)。

温度过太低则不能成膜或成膜速度慢,膜不完整,易泛黄;反之,膜粗大,耐蚀性低,同时槽液稳定性变差,沉渣增多。

促进剂含量低,成膜慢,膜层泛黄;反之,沉渣明显增多,膜层带彩色。

总酸度稍高,能加快磷化反应的进行,磷化膜薄而致密。

但不宜过高,否则沉渣多,膜层挂灰。

游离酸度低,有利于降低磷化温度和沉渣量;反之,沉渣增多,甚至不成膜。

其次,还要掌握槽液的调整方法。

具备化验条件的企业,做到磷化前检测槽液总酸度、游离酸度、促进剂气点等,严格槽液管理。

凭经验管理槽液效果也不错,槽液要定期排渣和更新。

如每周排渣一次,脱脂槽、表面调整槽每月更新一次。

典型的磷化工艺①脱脂(金属脱脂剂,60~65℃,3~4min)→热水洗(80~90℃)→酸洗(HCI:H2O=1:1,除锈加速剂适量,5~6min)→水洗→表面调整(表面调整剂5g/L,1min)→磷化(常温,冬天适当加温,6min)→二道水洗→烘干。

②脱脂(金属脱脂剂,30~40℃,5~10min)→水洗→酸洗(HCI:H2O=1:4,除锈加速剂适量,20~30min)→水洗→表面调整(表面调整剂5g/L,1min)→磷化(常温,20~30min)→水洗→烘干。

③脱脂(金属脱脂剂,60~70℃,3min)→热水洗(80~90℃)→表面调整(表面调整剂5g/L,1min)→磷化(30~40℃,10~20min)→水洗→烘干(脱脂前手工除去局部浮锈,浸渍脱脂后手工擦洗补充除油)。

④脱脂表面调整“二合一”(40~50℃,5~10min)→水洗→酸洗(HCI:H2O=1:1,10min)→水洗→(表面调整剂5g/L,1min)→磷化(30~40℃,20~30min)→水洗→烘干。

第一种工艺适宜油、锈较重的紧固件,工艺设计最佳,能获得优质磷化膜。

其优点为:负载容量大,生产效率高。

脱脂后热水洗,紧固件表面清洁。

酸洗后水洗能洗净紧固件表面的残酸及吸附的缓蚀剂,避免抑制磷化反应,造成磷化不均匀。

磷化后二道水洗,能洗掉磷化膜上的残留可溶性盐,避免引起涂层的早期起泡和脱落。

第二种工艺适宜油、锈中等的紧固件,工艺控制得当,也能获得较好的磷化膜。

第三种工艺适宜有油、无锈的紧固件,生产线上不设酸洗工艺,很适合气焊接异型件、紧固件磷化。

第四种工艺适宜油轻、锈重的紧固件,但采用了脱脂表面调整“二合一”工艺,使磷化质量受到影响,膜层粗糙、泛黄、挂灰等。

总之,紧固件磷化处理品质的优劣不仅取决于磷化工艺的选择和控制,而且取决于磷化工艺的管理。

随着科学技术进步,紧固件磷化处理正朝着中低温、低成本、低能耗、无污染,以及磷化膜均匀致密、膜薄且耐蚀性能好的方向发展。

2、冷镦钢盘条中珠光体类型组织的区分和判定类别:技术问题发布时间:2010/9/16 9:37:00浏览数:1785钢中的珠光体类型组织(简称珠光体)一般包括片状珠光体、索氏体、屈氏体等三种,它们通常呈现层片状的结构。

在生产实践中如何明确辨别这三种组织确实还存在混乱和误区。

我们做了一些更为详细的工作,与大家共同探讨。

1、关于珠光体的基本概念1.1珠光体的片层间距冷镦钢盘条中共析成分的奥氏体,冷却到临界点A1以下时,将分解为铁素体与渗碳体的混合物,称为珠光体,缓冷所得的珠光体呈片状,称为片状珠光体。

片状珠光体中片层方向大致相同的区域称为珠光体团,在一个奥氏体晶粒内,可以形成几个珠光体团。

珠光体团中相邻两片渗碳体(或铁素体)中心之间的(垂直)距离称为珠光体的片间距。

片间距的大小主要决定于珠光体的形成温度,随着冷却速度的增加,奥氏体转变为珠光体的温度逐渐降低,亦即转变时的过冷度不断增大,则转变所得的珠光体片间距也不断减小。

一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;在更低的温度下形成的片间距为30~80nm的珠光体在生产上被称为屈氏体。

珠光体类型的组织的具体形成温度区间是:珠光体是临界点A1~650℃;索氏体是650~600℃;屈氏体是600~550℃。

实际上,关于珠光体类型组织的片间距的数值也存在不同的划分,比如,有的文献中的数据是珠光体:大于0.4;索氏体:0.2~0.4;屈氏体:小于0.2;还有的是,粗珠光体:0.6~0.7;珠光体:0.35~0.5;索氏体:0.25~0.3。

也有人认为是:片层间距在0.1、0.25、0.6左右的珠光体类型组织分别为屈氏体、索氏体、片状珠光体。

对于珠光体层片间距区分范围的混乱,其实可以根据组织、性能之间的关系来明确。

由于150nm对应着珠光体组织性能上的一个转折点,所以,有理由认为,一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;屈氏体的片间距为30~80nm的划分是更为合理的。

1.2光学显微镜中的珠光体一般所谓的片状珠光体,是指在光学显微镜(通常是500倍观察条件)下能够明显分辨出片层的珠光体;如果珠光体的片间距小到光镜难以分辨时,这种细片状珠光体被称为索氏体。

实际上,用电子显微镜观察时,不论是索氏体还是在更低的温度下形成的屈氏体,都是层片状组织,只是片间距不同而已。

不同的文献对于光学显微镜的放大倍数在分辨索氏体能力上的描述基本一致,在满足相应的数值孔径的基础上,认为400~500倍条件下,可以分辨片状珠光体,800~1000倍时可以分辨索氏体。

根据GB/T13298-1991标准,通常辨别珠光体、屈氏体是在500倍放大倍数下进行观察,近似的判定是:如果放大倍数500倍下,铁素体和渗碳体难以分辨就是索氏体型珠光体。

但是,对于在光学显微镜中根据是否能分辨出片层状的结构来区分片状珠光体与索氏体我们认为存在需要探讨的必要。

2、生产实践中的应用珠光体这样最基本的组织形态,在生产实践中确实有时得不到重视,很少碰到需要明确一个显微镜视场中是否同时存在片状珠光体和索氏体及判定方式的问题。

但是,经常也会有师傅解释珠光体组织的时候,特别说明在一个视场中看到的不同层片间距的珠光体是由于形成的先后顺序不同,也就是形成温度的高低不同产生的层片间距的差异。

我们所知道的会涉及在生产检验中判定珠光体类型组织的场合除了在中碳钢盘条索氏体含量金相检测方法中需要判定组织中是否存在片状珠光体,确定索氏体含量的比例外,在灰铸铁金相中也涉及基体组织是索氏体还是片状珠光体的判定工作。

由于珠光体类型组织的常见性,肯定还有其它的生产场合需要涉及严格区分珠光体类型组织的时候,这需要作深入的研究才行。

3、片状珠光体与索氏体能否共存于一个显微镜视场中珠光体的片间距主要决定于形成温度,那么,在一个500倍的光学显微镜视场大小尺度范围的材料内部是否会存在不同的温度波动、梯度。

我们以DMI3000M型显微镜为例,其10倍目镜的视场大小是18cm。

那么,通常在500倍观察条件下观察视场所对应的实际物理尺寸大小是0.36mm直径的圆形区域。

而一般钢在奥氏体化的过程中不希望出现粗大的晶粒,晶粒度会控制在5~8级,相对应的平均直径大小在0.062~0.022mm,为此,珠光体团的尺度在30.0~10.0μm左右。

对于大截面尺寸紧固件,心部、表面由于散热条件的差异造成冷却速度的差异,形成一定的温度梯度,可以造成较大的温度差异,从而产生不同转变产物由表面到心部的连续分布是比较好的,也比较常见。

不过,一般这是在普通的尺寸范围内的现象。

如果具体到珠光体类型组织转变的冷却速度、转变温度范围来讲,再加上对于类似盘条等截面很小的紧固件时,在截面上的温度差异显然无法在显微镜视场大小的区域看到。

另外,从实际检测来说,在一个高倍(500倍)视场情况下一般会发现,可以分辨层片的珠光体和无法分辨层片的珠光体的空间分布是散乱、均匀分布的。

由此,如果简单地认为是存在不同类型的珠光体组织,那么,也就是认为同一个显微镜视场中是会呈现不同区域(间隔20μm左右)的温度存在高低起伏的状况,从而造成珠光体层片间距的差异。

4、同一视场中一类珠光体表现出不同层片间距的原因简单地说,珠光体的片间距存在一个真实层片间距和一个截面观察层片间距。

文献中也提到:在用金相法测量珠光体片间距时,由于样品表面与珠光体片层交截的角度不同,将使测出的片间距也不同,只有当样品的表面与珠光体片层垂直时,测得的才是片间距的真实值。

实际上,如果了解样品制备的基本原理及过程,并且了解斜面截切在研究表层金相组织中的作用的话,很好理解的是,在样品的某个磨面上我们所看到的珠光体组织的层片间距并不是准确的层片垂直片间距,而是与片层垂直方向有一定角度方向的截面观察层片间距,截面观察层片间距会在一个很大的范围内波动出现,甚至可以见到数倍于垂直片间距的截面观察片间距,这是明确的。

实际上,确实可以认为珠光体片的垂直片间距被放大了,不过不能简单地说成是“假象”那么简单。

完整地说,每个珠光体晶团层片的空间取向是任意的,一个样品是由众多的珠光体晶团构成的,晶团之间是无规则、无择优取向分布的。

相关主题