当前位置:文档之家› 基于ANSYS的船用螺旋桨模态分析与优化设计

基于ANSYS的船用螺旋桨模态分析与优化设计

基于ANSYS的船用螺旋桨模态分析与优化设计
利用UG软件对船用螺旋桨模型进行处理,并用ANSYS有限元仿真软件分析其模态振型,首先分析无支撑情况下螺旋桨单叶片的模态振型,提取振幅最大模态。

设计支撑方案,确定支撑位置并进行约束模态分析,结果显示螺旋桨单叶片频率有所提高,增加了加工刚度,最后确定优化的支撑方案,显著提高了螺旋桨的刚度,减小各阶模态的振动位移,对实际加工具有重要意义。

标签:ANSYS有限元分析;螺旋桨模态分析;优化设计
Abstract:The model of marine propeller is processed by UG software,and its modal mode is analyzed by ANSYS finite element simulation software. Firstly,the modal mode of single blade of propeller without support is analyzed,and the maximum amplitude mode is extracted. The results show that the frequency of single blade of propeller is increased and the machining stiffness is increased. Finally,the optimized bracing scheme is determined,and the stiffness of propeller is improved significantly. It is of great significance to reduce the vibration displacement of each mode for machining.
Keywords:ANSYS finite element analysis;propeller modal analysis;optimal design
螺旋槳是舰船的主动力装置,其设计与制造精度直接决定舰船运行性能。

目前,螺旋桨的设计技术我国已达到领先水平,但是加工制造技术还存在较大差距。

我国对于船用螺旋桨现阶段的加工一直采用手工打磨的方式,其工作环境差,对工人的身体有很大损伤,并且效率低下,精度也难以控制。

为了解决这一问题,我国一些学者正在研究利用机器人进行螺旋桨铣削加工的工艺系统,其具有较多的优势。

研究发现,铣削加工中的振动一直是影响加工质量的主要因素,所以,针对螺旋桨的振动模态分析是研究的重点内容。

本文主要利用有限元分析软件ANSYS对一种型号的船用螺旋桨进行模态振型分析,通过施加约束条件分析使用支撑时的模态变化,寻找优化的支撑方法。

1 模型处理
利用三维建模软件UG对现有的螺旋桨设计模型进行简单处理,避免在后续有限元分析时遇到的一些问题。

如图1所示为螺旋桨的设计模型,直径3300mm,在叶梢位置由于建模方法的原因,存留有没有闭合的曲线,对后续有限元的网格划分会带来影响,所以,利用一直径为3290mm的同心圆柱面截取设计模型,截去叶梢的尖角部分,对模型整体模态的影响可以忽略不计,处理如图2所示。

另外,根据螺旋桨的结构特点,靠近桨毂部分结构较复杂,靠近叶梢部分结构简单,所以为了在后续的单元划分时保证较高精度的同时又花费较少时间,在模型处理时将螺旋桨分割为两部分实体,一部分是包含桨毂,另一部分包含叶片。

最后将处理完成的模型导出x_t格式文件,以便ANSYS软件导入。

2 船用螺旋桨有限元分析
2.1 网格划分与载荷分析
根据查阅文献,大型船用螺旋桨材料为铜3(Cu3),主要成分为3级镍铝青铜,弹性模量为1.177e11Pa,泊松比为0.34,密度为7800kg/m3。

由于螺旋桨曲面结构复杂,一般的六面体单元不能满足要求,所以此次分析单元类型选为solid187单元,即具有高阶3维10节点的四面体单元,每个节点具有XYZ三个方向的平移自由度,划分网格时采用自由划分网格方式。

单个叶片网格划分结果为122611个节点,82129个单元,网格生成如图3所示。

在求解模块,需要设置约束条件和载荷,根据实际螺旋桨的加工装夹情况,选取螺旋桨下端面施加6个自由度约束。

在自由模态分析阶段,载荷只考虑由自重产生的预紧力。

即为无阻尼自由振动的特征方程,由此式即可得到结构的各阶固有频率。

ANSYS中的模态分析包含多种求解模块,其中BOLCK LANCZOS方法是目前求解大型特征值问题最有效的方法,具有较高的求解精度和计算速度,所以本文选择此种求解方法。

在进行模态仿真时发现每五个模态频率值相近,考虑是由于多个叶片造成的影响,故而把仿真模型改为桨毂加单个叶片。

在进行无支撑仿真时,只考虑由重力引起的预紧力,模态仿真结果如表1所示,提取前15阶中位移最大的两阶模态振型如图4所示,从结果也可以看出,叶梢部分变形最大。

3 优化设计
3.1 辅助支撑设计
本文研究船用螺旋桨的模态频率主要是为了避免在加工过程中因周期切削力的激励而产生共振,进而影响加工质量,所以实际加工中常常采用支撑的方式减小振动和变形。

如图5所示为实际加工中螺旋桨叶片的支撑方式,千斤顶末端放置曲面橡皮,或者采用万向节加橡皮垫圈的形式,使螺旋桨曲面受力均匀。

本文选取支撑点位置为优化设计变量,单个叶片对应模态频率的最大振幅为优化目标变量,通过选取不同位置的支撑结果进行对比,得到模态频率最合适,振幅最小的支撑位置。

华中科技大学宫秀梅研究了支撑位置的优化算法,本文参考了此种算法。

相关主题