地基处理方法与研究摘要:黄土地区经常发生水土流失、地基湿陷、水库边坡、路堑及黄土源边滑坡及崩塌等灾害性地质活动,对工农业建设及人民生活经常造成严重危害,所以采用适合的处理方法处理黄土的失陷性对工程具有重要的意义。
在进行水工建筑物的基础设计时,时常会碰到软弱地基问题。
关键词:湿陷性黄土;地基处理;强夯法;灰土挤密法在西北、华北地区常会遇到黄土地基处理问题,通常包括低湿度湿陷性黄土以消除或减小湿陷变形危害为主要目的,同时需提高地基承载力的地基处理问题,以及高湿度软弱黄土(尤其是饱和黄土,多由湿陷性黄土饱水转化而成,饱和度Sr﹥80%)以提高地基承载力、减少有害压缩变形为目的的地基处理问题。
由于后者的工程特性多与一般粘性土类似,主要应考虑地基的压缩变形,可按软弱粘性土对待,而前者则主要应考虑地基受水浸湿后的湿陷变形。
一、垫层法垫层法是先将基础下的湿陷性黄土一部分或全部挖除,然后用素土或灰土分层夯实做成垫层,以便消除地基的部分或全部湿陷量,并可减小地基的压缩变形,提高地基承载力,可将其分为局部垫层和整片垫层。
当仅要求消除基底下1~3m湿陷性黄土的湿陷量时,宜采用局部或整片土垫层进行处理;当同时要求提高垫层土的承载力或增强水稳性时,宜采用局部或整片灰土垫层进行处理。
垫层的设计主要包括垫层的厚度、宽度、夯实后的压实系数和承载力设计值的确定等方面。
垫层设计的原则是既要满足建筑物对地基变形及稳定的要求,又要符合经济合理的要求。
同时,还要考虑以下几方面的问题:1.局部土垫层的处理宽度超出基础底边的宽度较小,地基处理后,地面水及管道漏水仍可能从垫层侧向渗入下部未处理的湿陷性土层而引起湿陷,因此,设置局部垫层不考虑起防水、隔水作用,地基受水浸湿可能性大及有防渗要求的建筑物,不得采用局部土垫层处理地基。
2.整片垫层的平面处理范围,每边超出建筑物外墙基础外缘的宽度,不应小于垫层的厚度,即并不应小于2m。
3.在地下水位不可能上升的自重湿陷性黄土场地,当未消除地基的全部湿陷量时,对地基受水浸湿可能性大或有严格防水要求的建筑物,采用整片土垫层处理地基较为适宜。
但地下水位有可能上升的自重湿陷性黄土场地,应考虑水位上升后,对下部未处理的湿陷性土层引起湿陷的可能性。
二、重锤表层夯实及强夯重锤表层夯实适用于处理饱和度不大于60%的湿陷性黄土地基。
一般采用2.5~3.0t的重锤,落距4.0~4.5m,可消除基底以下1.2~1.8m黄土层的湿陷性。
在夯实层的范围内,土的物理、力学性质获得显著改善,平均干密度明显增大,压缩性降低,湿陷性消除,透水性减弱,承载力提高。
非自重湿陷性黄土地基,其湿陷起始压力较大,当用重锤处理部分湿陷性黄土层后,可减少甚至消除黄土地基的湿陷变形。
因此在非自重湿陷性黄土场地采用重锤夯实的优越性较明显。
强夯法加固地基机理一般认为,是将一定重量的重锤以一定落距给予地基以冲击和振动,从而达到增大压实度,改善土的振动液化条件,消除湿陷性黄土的湿陷性等目的。
强夯加固过程是瞬时对地基土体施加一个巨大的冲击能量,使土体发生一系列的物理变化,如土体结构的破坏或排水固结、压密以及触变恢复等过程。
其作用结果是使一定范围内的地基强度提高、孔隙挤密。
单点强夯是通过反复巨大的冲击能及伴随产生的压缩波、剪切波和瑞利波等对地基发挥综合作用,使土体受到瞬间加荷,加荷的拉压交替使用,使土颗粒间的原有接触形式迅速改变,产生位移,完成土体压缩-加密的过程。
加固后土体的内聚力虽受到破坏或扰动有所降低,但原始内聚力随土体密度增大而得以大幅提高;单点强夯如图1所示,夯锤底下形成夯实核,呈近似的抛物线型,夯实核的最大厚度与夯锤半径相近,土体成千层饼状,其干密度大于1.85g/cm3;三、挤密桩法挤密桩法适用于处理地下水位以上的湿陷性黄土地基,施工时,先按设计方案在基础平面位置布置桩孔并成孔,然后将备好的素土(粉质粘土或粉土)或灰土在最优含水量下分层填入桩孔内,并分层夯(捣)实至设计标高止。
通过成孔或桩体夯实过程中的横向挤压作用,使桩间土得以挤密,从而形成复合地基。
值得注意的是,不得用粗颗粒的砂、石或其它透水性材料填入桩孔内。
灰土挤密桩和土桩地基一般适用于地下水位以上含水量14%~22%的湿陷性黄土和人工黄土和人工填土,处理深度可达5~10米。
灰土挤密桩是利用锤击打入或振动沉管的方法在土中形成桩孔,然后在桩孔中分层填入素土或灰土等填充料,在成孔和夯实填料的过程中,原来处于桩孔部位的土全部被挤入周围土体,通过这一挤密过程,从而彻底改变土层的湿陷性质并提高其承载力。
其主要作用机理分两部分:(一)机械打桩成孔横向加密土层,改善土体物理力学性能在土中挤压成孔时,桩孔内原有土被强制侧向挤出,使桩周一定范围内土层受到挤压,扰动和重塑,使桩周土孔隙比减小,土中气体溢出,从而增加土体密实程度,降低土压缩性,提高土体承载能力。
土体挤密范围,是从桩孔边向四周减弱,孔壁边土干密度可接近或超过最大干密度,也就是说压实系数可以接近或超过1.0,其挤密影响半径通常为1.5~2d(d为挤密桩直径),渐次向外,干密度逐渐减小,直至土的天然干密度,试验证明沉管对土体挤密效果可以相互叠加,桩距愈小,挤密效果愈显著。
(二)灰土桩与桩间挤密土合成复合地基上部荷载通过它传递时,由于它们能互相适应变形,因此能有效而均匀地扩散应力,地基应力扩散得很快,在加固深度以下附加应力已大为衰减,无需坚实的下卧层。
一般来说,挤密桩可以按等边三角形布置,这样可以达到均匀的挤密效果。
每根桩都对其周围一定范围内的土体有一定的挤密作用,即使桩与桩之间有一小部分尚未被挤密的土体,因为其周围有着稳定的、不会发生湿陷的边界这一部分也不会发生湿陷变形。
桩与其周围被挤密后的土体共同形成了复合地基,一起承受上部荷载。
可以说,在挤密桩长度范围内土体的湿陷性已完全被消除处理后的地基与上部结构浑然一体,即使桩底以下土后的土体即使有沉降变形,也是微小的和均匀的,不致对上部结构形成威胁。
桩的间距的大小直接影响到挤密效果的好坏,也与工程建设的经济性密切相关。
四、桩基础桩基础既不是天然地基,也不是人工地基,属于基础范畴,是将上部荷载传递给桩侧和桩底端以下的土(或岩)层,采用挖、钻孔等非挤土方法而成的桩,在成孔过程中将土排出孔外,桩孔周围土的性质并无改善。
但设置在湿陷性黄土场地上的桩基础,桩周土受水浸湿后,桩侧阻力大幅度减小,甚至消失,当桩周土产生自重湿陷时,桩侧的正摩阻力迅速转化为负摩阻力。
因此,在湿陷性黄土场地上,不允许采用摩擦型桩,设计桩基础除桩身强度必须满足要求外,还应根据场地工程地质条件,采用穿透湿陷性黄土层的端承型桩(包括端承桩和摩擦端承桩),其桩底端以下的受力层:在非自重湿陷性黄土场地,必须是压缩性较低的非湿陷性土(岩)层;在自重湿陷性黄土场地,必须是可靠的持力层。
这样,当桩周的土受水浸湿,桩侧的正摩阻力一旦转化为负摩阻力时,便可由端承型桩的下部非湿陷性土(岩)层所承受,并可满足设计要求,以保证建筑物的安全与正常使用。
五、化学加固法在我国湿陷性黄土地区地基处理应用很多,并取得实践经验的化学加固法包括硅化加固法和碱液加固法,其加固机理如下:硅化加固湿陷性黄土的物理化学过程,一方面基于浓度不大的、粘滞度很小的硅酸钠溶液顺利地渗入黄土孔隙中,另一方面溶液与土的相互凝结,土起着凝结剂的作用。
碱液加固:利用氢氧化钠溶液加固湿陷性黄土地基在我国始于20世纪60年代,其加固原则为:氢氧化钠溶液注入黄土后,首先与土中可溶性和交换性碱土金属阳离子发生置换反映,反映结果使土颗粒表面生成碱土金属氢氧化物。
六、预浸水法预浸水法是在修建建筑物前预先对湿陷性黄土场地大面积浸水,使土体在饱和自重应力作用下,发生湿陷产生压密,以消除全部黄土层的自重湿陷性和深部土层的外荷湿陷性。
预浸水法一般适用于湿陷性黄土厚度大、湿陷性强烈的自重湿陷性黄土场地。
由于浸水时场地周围地表下沉开裂,并容易造成“跑水”穿洞,影响建筑物的安全,所以空旷的新建地区较为适用。
软弱地基的种类及性质(一)淤泥和淤泥质土淤泥和淤泥质土,工程上统称为软土,是在静水或缓慢的流水环境中沉积,并经生物化学作用形成。
其天然含水量大于液限、天然孔隙比大于或等于1.5的黏性土,称为淤泥;当天然孔隙比小于1.5但大于或等于1.0时称为淤泥质土。
其具有压缩性高、抗剪强度低,渗透性小、结构性及流变性明显等工程特性。
因此,建筑物的沉降量大而不均匀,沉降速率大以及沉降稳定历时较长。
(二)杂填土和冲填土由人类活动而堆填成的土称之为人工填土,其性质与淤泥质土相似,物质成分较杂、均匀性较差,多数情况下,在同一建筑场地的不同位置,其承载力和压缩性往往有较大的差异,如作为地基持力层,一般须经人:仁处理。
二、地基处理方法分类及适用范围近年来,大量的土木工程实践推动了软弱地基处理技术的迅速发展,地基处理的途径越来越多。
《建筑地基处理技术规范》(JGJ79—2002)(以下简称《地基处理规范》)就给出了13种地基处理方法。
所以,在考虑地基处理的设计与施工时,必须注意坚持因地制宜的原则,不可盲目施工。
根据地基处理方法的基本原理,常用的地基处理方法见表9—1。
地质条件更为复杂,表现为具有多种不良地质现象,如滑坡、崩塌、泥石流、岩溶和土洞等,给建筑物造成了直接或潜在的威胁。
为保证建筑物的安全和正常使用,应根据其工程特点和要求,因地制宜、综合治理。
此外,我国位于世界两大地震带——环太平洋地震带与欧亚地震带的交会部位,构造复杂,地震活动频繁。
地震中地基的稳定性和变形以及抗震、防震措施是地震区地基基础设计必须考虑的主要问题。
湿陷性黄土地基一、黄土的特征及分布黄土是一种在第四纪时期形成的黄色或褐黄色的特殊土状堆积物,它的内部物质成分和外部形态特征都不同于同时期的其他沉积物。
颗粒组成上以粉粒(0.05一O.005mm)为主,同时含有砂粒(0,lmm以上)和黏粒(O.005mm以下)。
黄土含有大量的可溶盐类,通常具有肉眼可见的大孔隙,孔隙比变化范围多在1.0~1.1之间。
在一定压力(覆盖土层的自重应力或自重应力和建筑物附加应力)作用下受水浸湿,土的结构迅速破坏,并发生显著地附加下沉,其强度也迅速降低的黄土称为湿陷性黄土。
而在受水浸湿后,土的结构不破坏,并无显著附加下沉的黄土称为非湿陷性黄土。
非湿陷性黄土地基的设计和施工和一般黏性土地基不存在太大差别,后面讨论的均指与工程建设关系密切的湿陷性黄土。
湿陷性黄土又分为自重湿陷性黄土和非自重湿陷性黄土。
黄土受水授湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷性黄土。
由于黄土的湿陷性,因此使拟建建筑物的地基处理难度加大,当黄土作为建筑物地基时,首先要判断它是否具有湿陷性,然后才考虑是否需要地基处理以及如何处理。