当前位置:文档之家› 电动自行车驱动控制系统设计说明

电动自行车驱动控制系统设计说明

目录1、概述 (1)1.1 电动自行车驱动控制系统设计的意义 (1)1.2 研究现状综述 (1)1.3 研究方法 (2)1.3.1直流电机调速原理 (2)1.3.2直流调速系统实现方式 (3)2、系统总体方案论证 (4)2.1 系统方案比较与选择 (4)2.2 系统方案描述 (4)3、硬件电路的模块设计 (5)3.1控制电路设计 (5)3.2信号处理电路设计 (6)3.3驱动电路方案及参数描述 (7)3.3.1 IR2110驱动电路中IGBT抗干扰设计 (8)3.3.2 IR2110功率驱动介绍 (9)3.3.3 H桥驱动电路原理 (10)3.4 稳压电源设计 (10)3.5 光电测速电路 (11)4、系统软件设计 (12)4.1电动机驱动和速度控制程序设计 (13)4.2PWM调速与测速程序设计 (15)4.2.1 PCA捕获模式 (15)4.2.2 PCA脉宽调节模式 (16)4.2.3 PWM调制信号接收模块 (17)5.系统调试 (19)6、结束语 (20)参考文献 (21)致 (22)附录1 原理图 (23)附录2 PCB图 (24)附录3 程序清单 (25)1、定时器程序 (25)2、延时程序 (26)3、LCD显示程序 (26)4、PWM程序 (30)5、电动机调速程序 (32)6、主程序 (35)电动自行车驱动控制系统设计1、概 述1.1 研究现状综述20世纪70年代以来,直流电机传动经历了重大的技术、装备变革。

整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进[1]。

同时,高集成化、小型化、高可靠性及低成本成为控制的电路的发展方向。

使直流调速系统的性能指标大幅提高,应用围不断扩大。

直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代[1]。

早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低[2]。

随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。

由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。

所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。

直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。

采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。

现阶段,我国还没有自主的全数字化直流调速控制装置生产商,而国外先进的控制器价格昂贵,且技术转让受限,为此研究及更好的使用国外先进的控制器,吸收国外先进的数字化直流电机调速装置的优点,具有重要的实际意义和重大的经济价值。

1.2 研究方法1.2.1直流电机调速原理直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。

不同励磁方式的直流电动机机械特性曲线有所不同。

但是对于直流电动机的转速有以下公式:T C C R C U n c r c φφ内-= 其中:U —电压;R —励磁绕组本身的电阻;f —每极磁通(Wb);Cc —电势常数;Cr —转矩常量[3]。

由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制[4],而且由于励磁线圈电感较大,动态响应较差[5]。

所以在工业生产过程中常用的方法是电枢控制法。

图1-1 直流电机的工作原理图电枢控制是在励磁电压不变的情况下,把控制电压信号加到电机的电枢上,以控制电机的转速。

传统的改变电压方法是在电枢回路中串联一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低、平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大[6]。

随着电力电子的发展,出现了许多新的电枢电压控制方法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等等。

调压调速法具有平滑度高,能耗少,精度高等优点。

在工业生产中广泛使用其中脉宽调制(PWM)应用更为广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期“接通”和“断开”时间的长短,即改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

图1-2 电枢电压占空比和平均电压的关系图根据图1-2,如果电机始终接通电源时,电机转速最大为Vmax,占空比为D= t1/T,则电机的平均速度为:D*Vmax=V *D,可见只要改变占空比D,就可以得到不同的电机速度,从而达到调速的目的[7]。

1.2.2直流调速系统实现方式(1)基于晶闸管作为主电路的调速系统晶闸管的调速系统是采用分离元件设计的调速系统占用的空间大,控制角难于调整,且模拟器件的固有缺陷如:温漂、零漂电压等,导致电机的调速无法达到满意的结果。

晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难,性能较差,自动化控制程度差,调速过程较为复杂,不利于工业生产和小功率电路中采用。

另一问题是当晶闸管导通角很小时,系统的功率因素很低,并产生较大的谐波电流,从而引起电网电压波动殃及同电网中的用电设备,造成“电力公害”。

(2)基于PWM为主控电路的调速系统与传统的直流调速技术相比较,PWM(脉宽调制技术)直流调速系统具有较大的优越性:主电路线路简单,需要的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速围宽;系统频带宽,快速响应性能好,动态抗干扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率高。

基于单片机类由软件来实现PWM:在PWM 调速系统中占空比D是一个重要参数在电源电压Ud不变的情况下,电枢端电压的平均值取决于占空比D的大小,改变D 的值可以改变电枢端电压的平均值从而达到调速的目的。

改变占空比D的值有三种方法:A、定宽调频法:保持t1不变,只改变t,这样使周期(或频率)也随之改变[7]。

(图1-2)B、调宽调频法:保持t 不变,只改变t1 ,这样使周期(或频率)也随之改变[7]。

(图1-2)C、定频调宽法:保持周期T(或频率)不变,同时改变t1 和t[7]。

(图1-2)前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变直流电动机电枢两端电压。

利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。

1.3 电动自行车驱动控制系统设计意义现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制,电动自行车驱动控制系统系统通常采用直流调速技术,经过二十几年的发展,已达到一个很高的技术水平。

特别是采用了微处理器及其他先进电力电子技术,使数字式直流调速装置在精度的准确性、控制性能的优良性和抗干扰的性能有很大的提高和发展,在国外得到广泛的应用。

数字化直流调速装置作为目前最新控制水平的传动方式显示了强大优势。

全数字化直流调速系统不断升级换代,为工程应用和工业生产提供了优越的条件。

2、系统总体方案论证2.1 系统方案比较与选择方案一:采用专用PWM集成芯片、IR2110 功率驱动芯片构成整个系统的核心,现在市场上已经有很多种型号,如Tl公司的TL494芯片,东芝公司的ZSK313I芯片等。

这些芯片除了有PWM信号发生功能外,还有“死区”调节功能、过流过压保护功能等。

这种专用PWM集成芯片可以减轻单片机的负担,工作更可靠,但其价格相对较高,难于控制工业成本不宜采用。

方案二:采用MC51单片机、功率集成电路芯片L298构成直流调速装置。

L298是双H高电压大电流功率集成电路,直接采用TTL逻辑电平控制,可用来驱动继电器、线圈、直流电动机、步进电动机等电感性负载。

其驱动电压为46V,直流电流总和为4A。

该方案总体上是具有可行性,但是L298的驱动电压和电流较小,不利于工业生产应用,无法满足工业生产实践电压、大电流的直流电机调速。

方案三:采用STC12C5A60S2增强型单片机、IR2110功率驱动芯片构成整个系统的核心实现对直流电机的调速。

STC12C5A60S2具有两个定时器T0和T1[9]。

通过控制定时器初值T0和T1,从而可以实现从任意端口输出不同占空比的脉冲波形。

STC12C5A60S2控制简单,价格廉价,且利用STC12C5A60S2构成单片机最小应用系统,可缩小系统体积,提高系统可靠性,降低系统成本。

IR2110是专门的MOSFET 管和IGBT的驱动芯片,带有自举电路和隔离作用,有利于和单片机联机工作,且IGBT 的工作电流可达50A,电压可达1200V[10],适合工业生产应用。

综合上述三种方案,本设计采用方案三作为整个系统的设计思路。

2.2 系统构成本系统以STC12C5A60S2为控制核心,配以4键盘和LCD液晶显示屏,通过STC12C5A60S2部PCA计数器对主干驱动电路进行速度采集,并通过A/D转换进行速度显示。

同时将STC12C5A60S2产生的PWM信号经过逻辑延迟电路后加载到以IR2110为驱动核心,IGBT构成的H桥主干驱动电路上实现对直流电机的控制和调速。

框图如下图2-1图2-1 系统整体框图3、驱动控制系统硬件电路设计3.1控制电路本系统采用STC12C5A60S2控制输出数据,产生PWM 信号,送到驱动电路,驱动直流电机,直流电机通过测速电路,将速度数据通过PCA 送回单片机,在LCD 液晶显示屏上显示占空比和电机转速的变化,并依据按键电路下达的指令对数据进行处理,实现对电机速度和转向的控制,达到直流电机调速的目的。

图3-1控制电路框图STC12C5A60S2 系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速、低功耗和超强抗干扰的新一代8051单片机,指令代码完全兼容传主控芯片 PWM 信号的产生与放大 直流电机测速 发电机 PCA 捕捉模式 A/D 转换 主控芯片STC12C5A60S2统8051,但速度快8-12倍。

部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),适用于电机控制,强干扰场合。

STC12C5A60S2系列单片机有2路可编程计数器阵列PCA/PWM,即P1.3与P1.4口(通过AUXR1寄存器可以设置PCA/PWM从P1口切换到P4口)。

相关主题