当前位置:文档之家› (完整版)实验一采样率对信号频谱的影响

(完整版)实验一采样率对信号频谱的影响

实验一 采样率对信号频谱的影响1.实验目的(1)理解采样定理;(2)掌握采样频率确定方法;(3)理解频谱的概念;(4)理解三种频率之间的关系。

2.实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k s kT t t M )()(δ (7-13) )()()(ˆt M t x t xa a = (7-14) 式中T s 为采样间隔。

因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。

显然)()()()()(ˆs k s a k s a a kT t kT x kT t t x t x-=-=∑∑∞-∞=∞-∞=δδ (7-15)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。

对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。

下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk s s a kj j X T j X )(1)(ˆ (7-16)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。

只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。

根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。

这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2h s T T ≤ (7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。

在对正弦信号采样时,采样频率要大于这一最低的采样频率,或小于这一最大的采样间隔才能不失真地恢复信号。

对正弦信号采样时,一般要求在一个周期至少采样3个点,即采样频率h s f f 3 。

3.实验内容(1)采样率的确定在本实验中要用到正弦信号、余弦信号和矩形波:正弦信号:sin(20πt );余弦信号:cos(20πt );矩形波:频率为50Hz 、占空比为1的矩形波(2)计算采样后所得序列的频谱① 正弦信号在采样率为15Hz 、20Hz 和50Hz 时采样所得序列的频谱;② 余弦信号在采样率为15Hz 、20Hz 和50Hz 时采样所得序列的频谱;③ 矩形波在采样率为100Hz 、400Hz 和800Hz 时采样所得序列的频谱;(3)分析不同信号在不同采样率下频谱的特点4.实验步骤(1)复习并理解时域采样定理;(2)编写Matlab 程序计算不同采样率下信号的频谱;(3)调试程序,排除程序中的错误;(4)分析程序运行结果,检验是否与理论一致。

5.实验报告要求(1)阐明实验的目的、原理和内容;(2)打印主要程序并粘贴在实验报告中;(3)打印实验结果并粘贴在实验报告中;(4)针对实验结果加以分析和总结。

6.思考题(1)对相同频率的正弦和余弦信号,均采用信号频率2倍的采样率采样时所得序列的频谱有何不同?为什么?(2)50Hz 的矩形波的采样率为何不能为100Hz ?(3)对矩形波,要完全不失真采样率应为多少?一般采样率为信号频率的多少倍时就可近似认为没有失真?例3-5-1 试求信号x (t )=sin(100πt )用采样率为80Hz 、100Hz 、101Hz 、150Hz 时采样所得序列的频谱,要求频率分辨率为0.5Hz 。

解:频率分辨率为0.5Hz ,则频域采样点数分别为160、200、202和300。

程序如下:deltf=0.5;%频率分辨率Fs1=80;Fs2=100;Fs3=101;Fs4=150;%采样率N1=Fs1/deltf;N2=Fs2/deltf;N3=Fs3/deltf;N4=Fs4/deltf;%采样点数n1=0:N1-1;n2=0:N2-1;n3=0:N3-1;n4=0:N4-1;%采样点x1=sin(100*pi*n1/Fs1);x2=sin(100*pi*n2/Fs2);%采样x3=sin(100*pi*n3/Fs3);x4=sin(100*pi*n4/Fs4);%采样y1=fft(x1);y2=fft(x2);y3=fft(x3);y4=fft(x4);%快速傅里叶变换y1=y1.*conj(y1)/N1^2;y2=y2.*conj(y2)/N2^2;%计算功率y3=y3.*conj(y3)/N3^2;y4=y4.*conj(y4)/N4^2;%计算功率subplot(2,2,1);plot((0:49)/Fs1,x1(1:50));xlabel('时间/s');ylabel('幅度');axis([0 0.6 -1 1.5]);text(0.02,1.2,'采样率为80Hz的时域波形');subplot(2,2,2);plot(n1*Fs1/N1,y1);xlabel('频率/Hz');ylabel('幅度(功率)');text(10,0.32,'采样率为80Hz的频谱');%下面显示波形的程序省略程序运行结果如图3-15所示,信号实际频率为50Hz,现分析如下:①在采样率为80Hz时,频谱中有两个冲激,分别对应30Hz和50Hz,50Hz的冲激与理论一致,30Hz的冲激为采样率(80Hz)与信号实际频率(50Hz)之差,即30Hz冲激其实是下一周期负频率对应的冲激,表明频谱前后周期之间出现了重叠,即混叠;②采样率为100Hz时,时域波形和频谱幅度均极小,近似为0,时域波形杂乱无章,频谱也无规律可言,原因在于,采样率刚好为频率的2倍,所以采样点刚好落在了幅值为0处,故几乎无信号;③采样率为101Hz时,时域波形幅度由0逐渐递增直至达到1,频谱中有两个冲激,一个对应50Hz,一个对应51Hz(两个冲激距离很近),从时域来看出现了失真,从频域来看,基本没有混叠;④采样率为150Hz时,时域波形与理论波形变化规律一致,但幅度没达到最大理论值1,频谱中有两个冲激,一个对应50Hz,一个对应100Hz,两者关于中心点N/2对称,根据前面的分析可知,100Hz的冲激其实对应于下一周期的负频率的冲激,由于数字频率一般取-π~π(对应于-N/2~N/2),故100Hz的冲激没有影响。

因此,对于正弦信号,采样率低于2f h时将出现频谱混叠。

图3-15 x(t)=sin(100πt)不同采样率的时域波形和频谱例3-5-2试求频率为50Hz的矩形波用采样率为400Hz、500Hz、600Hz、1000Hz时采样所得序列的频谱,要求频率分辨率为0.5Hz。

解:矩形波是由基频的奇次谐波构成,最高频率为∞,因此无论如何都将产生频谱的混叠。

但是随着频率的升高,其幅度衰减很快,因此,只要采样频率达到一定程度,就认为没有失真。

在实际处理一些波形时也常采用这一近似。

deltf=0.5;%频率分辨率Fs1=400;Fs2=500;Fs3=600;Fs4=1000;%采样率N1=Fs1/deltf;N2=Fs2/deltf;N3=Fs3/deltf;N4=Fs4/deltf;%采样点数n1=0:N1-1;n2=0:N2-1;n3=0:N3-1;n4=0:N4-1;%采样点x1=square(100*pi*n1/Fs1);x2=square(100*pi*n2/Fs2);%采样x3=square(100*pi*n3/Fs3);x4=square(100*pi*n4/Fs4);%采样y1=fft(x1);y2=fft(x2);y3=fft(x3);y4=fft(x4);%快速傅里叶变换y1=abs(y1);y2=abs(y2);%计算绝对值y3=abs(y3);y4=abs(y4);%计算绝对值figure(1)subplot(2,2,1);stem((0:399)/Fs1,x1(1:400));xlabel('时间/s');ylabel('幅度');axis([0 0.1 -1.5 1.5]);text(0,1.25,'采样率为400Hz的时域波形');subplot(2,2,2);plot(n1*Fs1/N1,y1);xlabel('频率/Hz');ylabel('幅度(绝对值)');text(8,550,'采样率为400Hz的频谱');subplot(2,2,3);stem((0:499)/Fs2,x2(1:500));xlabel('时间/s');ylabel('幅度');axis([0 0.1 -1.5 1.5]);text(0,1.25,'采样率为500Hz的时域波形');subplot(2,2,4);plot(n2*Fs2/N2,y2);xlabel('频率/Hz');ylabel('幅度(绝对值)');text(8,750,'采样率为500Hz的频谱');figure(2)subplot(2,2,1);stem((0:599)/Fs3,x3(1:600));xlabel('时间/s');ylabel('幅度');axis([0 0.08 -1.5 1.5]);text(0,1.25,'采样率为600Hz的时域波形');subplot(2,2,2);plot(n3*Fs3/N3,y3);xlabel('频率/Hz');ylabel('幅度(绝对值)');text(8,750,'采样率为600Hz的频谱');subplot(2,2,3);stem((0:999)/Fs4,x4(1:1000));xlabel('时间/s');ylabel('幅度');axis([0 0.06 -1.5 1.5]);text(0.02,1.2,'采样率为1000Hz的时域波形');subplot(2,2,4);plot(n4*Fs4/N4,y4);xlabel('频率/Hz');ylabel('幅度(绝对值)');text(10,1300,'采样率为1000Hz的频谱');现分析如下:①在采样频率为400Hz时,频谱图中出现了比较明显的4个冲激,频率分别对应于50Hz、150Hz、250Hz和350Hz。

相关主题