%--------------------------------------------------------------------------% Copula理论及应用实例%--------------------------------------------------------------------------%******************************读取数据************************************* % 从文件hushi.xls中读取数据hushi = xlsread('hushi.xls');% 提取矩阵hushi的第5列数据,即沪市的日收益率数据X = hushi(:,5);% 从文件shenshi.xls中读取数据shenshi = xlsread('shenshi.xls');% 提取矩阵shenshi的第5列数据,即深市的日收益率数据Y = shenshi(:,5);%****************************绘制频率直方图********************************* % 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图[fx, xc] = ecdf(X);figure;ecdfhist(fx, xc, 30);xlabel('沪市日收益率'); % 为X轴加标签ylabel('f(x)'); % 为Y轴加标签[fy, yc] = ecdf(Y);figure;ecdfhist(fy, yc, 30);xlabel('深市日收益率'); % 为X轴加标签ylabel('f(y)'); % 为Y轴加标签%****************************计算偏度和峰度********************************* % 计算X和Y的偏度xs = skewness(X)ys = skewness(Y)% 计算X和Y的峰度kx = kurtosis(X)ky = kurtosis(Y)%******************************正态性检验*********************************** % 分别调用jbtest、kstest和lillietest函数对X进行正态性检验[h,p] = jbtest(X) % Jarque-Bera检验[h,p] = kstest(X,[X,normcdf(X,mean(X),std(X))]) % Kolmogorov-Smirnov检验[h, p] = lillietest(X) % Lilliefors检验% 分别调用jbtest、kstest和lillietest函数对Y进行正态性检验[h,p] = jbtest(Y) % Jarque-Bera检验[h,p] = kstest(Y,[Y,normcdf(Y,mean(Y),std(Y))]) % Kolmogorov-Smirnov检验[h, p] = lillietest(Y) % Lilliefors检验%****************************求经验分布函数值******************************* % 调用ecdf函数求X和Y的经验分布函数[fx, Xsort] = ecdf(X);[fy, Ysort] = ecdf(Y);% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值U1 = spline(Xsort(2:end),fx(2:end),X);V1 = spline(Ysort(2:end),fy(2:end),Y);% 调用ecdf函数求X和Y的经验分布函数[fx, Xsort] = ecdf(X);[fy, Ysort] = ecdf(Y);% 提取fx和fy的第2个至最后一个元素,即排序后样本点处的经验分布函数值fx = fx(2:end);fy = fy(2:end);% 通过排序和反排序恢复原始样本点处的经验分布函数值U1和V1[Xsort,id] = sort(X);[idsort,id] = sort(id);U1 = fx(id);[Ysort,id] = sort(Y);[idsort,id] = sort(id);V1 = fy(id);%*******************************核分布估计********************************** % 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值U2 = ksdensity(X,X,'function','cdf');V2 = ksdensity(Y,Y,'function','cdf');% **********************绘制经验分布函数图和核分布估计图********************** [Xsort,id] = sort(X); % 为了作图的需要,对X进行排序figure; % 新建一个图形窗口plot(Xsort,U1(id),'c','LineWidth',5); % 绘制沪市日收益率的经验分布函数图hold onplot(Xsort,U2(id),'k-.','LineWidth',2); % 绘制沪市日收益率的核分布估计图legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框xlabel('沪市日收益率'); % 为X轴加标签ylabel('F(x)'); % 为Y轴加标签[Ysort,id] = sort(Y); % 为了作图的需要,对Y进行排序figure; % 新建一个图形窗口plot(Ysort,V1(id),'c','LineWidth',5); % 绘制深市日收益率的经验分布函数图hold onplot(Ysort,V2(id),'k-.','LineWidth',2); % 绘制深市日收益率的核分布估计图legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框xlabel('深市日收益率'); % 为X轴加标签ylabel('F(x)'); % 为Y轴加标签%****************************绘制二元频数直方图***************************** % 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值U = ksdensity(X,X,'function','cdf');V = ksdensity(Y,Y,'function','cdf');figure; % 新建一个图形窗口% 绘制边缘分布的二元频数直方图,hist3([U(:) V(:)],[30,30])xlabel('U(沪市)'); % 为X轴加标签ylabel('V(深市)'); % 为Y轴加标签zlabel('频数'); % 为z轴加标签%****************************绘制二元频率直方图***************************** figure; % 新建一个图形窗口% 绘制边缘分布的二元频数直方图,hist3([U(:) V(:)],[30,30])h = get(gca, 'Children'); % 获取频数直方图的句柄值cuv = get(h, 'ZData'); % 获取频数直方图的Z轴坐标set(h,'ZData',cuv*30*30/length(X)); % 对频数直方图的Z轴坐标作变换xlabel('U(沪市)'); % 为X轴加标签ylabel('V(深市)'); % 为Y轴加标签zlabel('c(u,v)'); % 为z轴加标签%***********************求Copula中参数的估计值****************************** % 调用copulafit函数估计二元正态Copula中的线性相关参数rho_norm = copulafit('Gaussian',[U(:), V(:)])% 调用copulafit函数估计二元t-Copula中的线性相关参数和自由度[rho_t,nuhat,nuci] = copulafit('t',[U(:), V(:)])%********************绘制Copula的密度函数和分布函数图************************ [Udata,Vdata] = meshgrid(linspace(0,1,31)); % 为绘图需要,产生新的网格数据% 调用copulapdf函数计算网格点上的二元正态Copula密度函数值Cpdf_norm = copulapdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);% 调用copulacdf函数计算网格点上的二元正态Copula分布函数值Ccdf_norm = copulacdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);% 调用copulapdf函数计算网格点上的二元t-Copula密度函数值Cpdf_t = copulapdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);% 调用copulacdf函数计算网格点上的二元t-Copula分布函数值Ccdf_t = copulacdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);% 绘制二元正态Copula的密度函数和分布函数图figure; % 新建图形窗口surf(Udata,Vdata,reshape(Cpdf_norm,size(Udata))); % 绘制二元正态Copula密度函数图xlabel('U'); % 为X轴加标签ylabel('V'); % 为Y轴加标签zlabel('c(u,v)'); % 为z轴加标签figure; % 新建图形窗口surf(Udata,Vdata,reshape(Ccdf_norm,size(Udata))); % 绘制二元正态Copula分布函数图xlabel('U'); % 为X轴加标签ylabel('V'); % 为Y轴加标签zlabel('C(u,v)'); % 为z轴加标签% 绘制二元t-Copula的密度函数和分布函数图figure; % 新建图形窗口surf(Udata,Vdata,reshape(Cpdf_t,size(Udata))); % 绘制二元t-Copula密度函数图xlabel('U'); % 为X轴加标签ylabel('V'); % 为Y轴加标签zlabel('c(u,v)'); % 为z轴加标签figure; % 新建图形窗口surf(Udata,Vdata,reshape(Ccdf_t,size(Udata))); % 绘制二元t-Copula分布函数图xlabel('U'); % 为X轴加标签ylabel('V'); % 为Y轴加标签zlabel('C(u,v)'); % 为z轴加标签%**************求Kendall秩相关系数和Spearman秩相关系数*********************** % 调用copulastat函数求二元正态Copula对应的Kendall秩相关系数Kendall_norm = copulastat('Gaussian',rho_norm)% 调用copulastat函数求二元正态Copula对应的Spearman秩相关系数Spearman_norm = copulastat('Gaussian',rho_norm,'type','Spearman')% 调用copulastat函数求二元t-Copula对应的Kendall秩相关系数Kendall_t = copulastat('t',rho_t)% 调用copulastat函数求二元t-Copula对应的Spearman秩相关系数Spearman_t = copulastat('t',rho_t,'type','Spearman')% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Kendall秩相关系数Kendall = corr([X,Y],'type','Kendall')% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Spearman秩相关系数Spearman = corr([X,Y],'type','Spearman')%******************************模型评价************************************* % 调用ecdf函数求X和Y的经验分布函数[fx, Xsort] = ecdf(X);[fy, Ysort] = ecdf(Y);% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值U = spline(Xsort(2:end),fx(2:end),X);V = spline(Ysort(2:end),fy(2:end),Y);% 定义经验Copula函数C(u,v)C = @(u,v)mean((U <= u).*(V <= v));% 为作图的需要,产生新的网格数据[Udata,Vdata] = meshgrid(linspace(0,1,31));% 通过循环计算经验Copula函数在新产生的网格点处的函数值for i=1:numel(Udata)CopulaEmpirical(i) = C(Udata(i),Vdata(i));endfigure; % 新建图形窗口% 绘制经验Copula分布函数图像surf(Udata,Vdata,reshape(CopulaEmpirical,size(Udata)))xlabel('U'); % 为X轴加标签ylabel('V'); % 为Y轴加标签zlabel('Empirical Copula C(u,v)'); % 为z轴加标签% 通过循环计算经验Copula函数在原始样本点处的函数值CUV = zeros(size(U(:)));for i=1:numel(U)CUV(i) = C(U(i),V(i));end% 计算线性相关参数为0.9264的二元正态Copula函数在原始样本点处的函数值rho_norm = 0.9264;Cgau = copulacdf('Gaussian',[U(:), V(:)],rho_norm);% 计算线性相关参数为0.9325,自由度为4的二元t-Copula函数在原始样本点处的函数值rho_t = 0.9325;k = 4.0089;Ct = copulacdf('t',[U(:), V(:)],rho_t,k);% 计算平方欧氏距离dgau2 = (CUV-Cgau)'*(CUV-Cgau) dt2 = (CUV-Ct)'*(CUV-Ct)。