当前位置:文档之家› 电力电子元器件小合集 (8)

电力电子元器件小合集 (8)

一三极管1、三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。

其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。

晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN 结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。

2、晶体三极管(简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN 和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N 表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。

两者除了电源极性不同外,其工作原理都是相同的。

3、对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Eb。

4、三极管的分类:1)按材质分:硅管、锗管。

2)按结构分: NPN、PNP。

3)按功能分: 开关管、功率管、达林顿管、光敏管等。

4)按功率分:小功率管、中功率管、大功率管。

5)按工作频率分:低频管、高频管、超频管。

6)按结构工艺分:合金管、平面管7)按安装方式:插件三极管、贴片三极管5、主要参数1)特征频率fT:当f= fT时,三极管完全失去电流放大功能。

如果工作频率大于fT,电路将不正常工作。

2)工作电压/电流:用这个参数可以指定该管的电压电流使用范围。

3)hFE:电流放大倍数。

4)VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压。

5)PCM:最大允许耗散功率。

6)封装形式:指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。

二二极管工作原理:二极管又称晶体二极管,它是一种具有单向传导电流的电子器件。

在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。

一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。

在其界面的两侧形成空间电荷层,构成自建电场。

当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。

当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。

当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。

当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

基本参数:二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。

主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。

二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。

二极管的作用二极管是最常用的电子元件之一,它最大的特性就是单向导电,最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断(称为逆向偏压)。

二极管主要用在整流电路,检波电路,稳压电路,各种调制电路中。

二极管的主要特性3.1 正向性外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN 结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。

这个不能使二极管导通的正向电压称为死区电压。

当正向电压大于死区电压以后,PN结内电场被克服,二极管导通,电流随电压增大而迅速上升。

在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。

3.2 反向性外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流,由于反向电流很小,二极管处于截止状态。

这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。

3.3 击穿外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。

引起电击穿的临界电压称为二极管反向击穿电压。

电击穿时二极管失去单向导电性。

如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。

因而使用时应避免二极管外加的反向电压过高。

三短路环1、交流接触器的铁心由硅钢片叠压而成,这样可以减少交变磁通在铁心中的涡流和磁滞损耗。

在有交变电流通过电磁线圈时,线圈对衔铁的吸引力也是交变的。

当交流电流通过零值时,线圈磁通变为零,对衔铁的吸引力也为零。

衔铁在复位弹簧作用下将产生释放趋势,这使动静铁心之间的吸引力随着交流电的变化而变化,从而产生变化和噪声加速动静铁心接触产生的磨损,引起给合不良,严重时还会使触点烧蚀。

2、为了消除此弊端,在铁心柱端面的一部分嵌入一只铜环,名为短路环。

该短路环相当于变压器的副边绕组,在线圈通入交流电时不仅线圈产生磁通,短路环中的感应电流也产生磁通,此时短路环相当于纯电感电路。

从纯电感电路的相位可知,线圈电流磁通与短路环感应电流磁通不同时为零,即电源输入的交变电流通过零值时短路环感应电流不为零,此时它的磁通对衔铁将起着吸咐作用,从而克服了衔铁被释放的趋势,使衔铁在通电过程总是处于吸合状态,明显减少了振动噪声,所以短路环又名消振环。

3、短路环嵌入接触器动、静铁芯接触面,可消除因交流电电流交替变化,电流为“0”的瞬间,在弹簧的反作用下产生的颤动噪音,使两铁心始终吸合着。

其原理是电磁感应原理,当铁心产生的磁通消失时,相当于变压器副边的短路环磁通不消失,这样本该被弹簧分开的两铁心在短路环磁场的作用下保持不分开,起到抑制分、合交替时颤动的作用。

四共模电感1、概述共模电感,也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。

在板卡设计中,共模电感也是起EMI(电磁干扰)滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。

2、主要功能共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。

3、工作原理共模电感的滤波电路就是共模电感线圈。

这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。

这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

4、性能特点1)具有极高的初始导磁率,在地磁场下具有大的阻抗和插入损耗,对若干扰具有极好的抑制作用,在较宽的频率范围内呈现出无共振插入损耗特性。

2)高初始导磁率:是铁氧体的5-20倍,因而具有更大的插入损耗,对传导干扰的抑制作用远大于铁氧体。

3)高饱和磁感应强度:比铁氧体高2-3倍。

在电流强干扰的场合不易磁化到饱和。

4)卓越的温度稳定性:较高的居里温度,在有较大温度波动的情况下,合金的性能变化率明显低于铁氧体,具有优良的稳定性,而且性能的变化接近于线性。

5)灵活的频率特性:而且更加灵活地通过调整工艺来得到所需要的频率特性。

通过不同的制造工艺,配合适当的线圈可以得到不同的阻抗特性,满足不同波段的滤波要求,使其阻抗值大大高于铁氧体。

6)应用范围:电网共模干扰滤除和电子设备和电子仪器抗冲击干扰。

五电解电容1、电解电容是电容的一种,金属箔为正极(铝或钽),与正极紧贴金属的氧化膜(氧化铝或五氧化二钽)是电介质,阴极由导电材料、电解质(电解质可以是液体或固体)和其他材料共同组成,因电解质是阴极的主要部分,电解电容因此而得名。

同时电解电容正负不可接错。

2、特点1)单位体积的电容量非常大,比其它种类的电容大几十到数百倍。

2)额定的容量可以做到非常大,可以轻易做到几万μf甚至几f(但不能和双电层电容比)。

3)价格比其它种类具有压倒性优势,因为电解电容的组成材料都是普通的工业材料,比如铝等等。

制造电解电容的设备也都是普通的工业设备,可以大规模生产,成本相对比较低。

3、原理:电解电容器通常是由金属箔(铝/钽)作为正电极,金属箔的绝缘氧化层(氧化铝/钽五氧化物)作为电介质,电解电容器以其正电极的不同分为铝电解电容器和钽电解电容器。

铝电解电容器的负电极由浸过电解质液(液态电解质)的薄纸/薄膜或电解质聚合物构成;钽电解电容器的负电极通常采用二氧化锰。

由于均以电解质作为负电极(注意和电介质区分),电解电容器因而得名。

4、极性电解电容器通常在电源电路或中频、低频电路中起电源滤波、退耦、信号耦合及时间常数设定、隔直流等作用。

一般不能用于交流电源电路,在直流电源电路中作滤波电容使用时,其阳极(正极)应与电源电压的正极端相连接,阴极(负极)与电源电压的负极端相连接,不能接反,否则会损坏电容器。

六变压器1、变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。

主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。

按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器等。

2、变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

变压器是变换交流电压、交变电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

3、技术参数初级电压:440V/415V/380V/220V/200V(客户指定)次级电压:380V/220V/200V/110V/100V/36V/24V/12V/6.3V/3.6V(客户指定)工作频率:50/60Hz绝缘电阻:≥100MΩ冷却方式:空气自冷(风冷)联结方式:Y/Y Y/△△/Y (客户指定)温升限值:铁芯不超过80K(温度计法),线圈温升不超过80K(铂电阻法)。

4、主要分类1)按相数分:单相变压器:用于单相负荷和三相变压器组。

相关主题