当前位置:文档之家› 6第六章表面改性技术1

6第六章表面改性技术1

第六章 表面改性技术
第六章 表面改性技术 6.1 金属表面形变强化
零件在服役过程中往往由于表面强度不足, 或者耐腐蚀性能差,而疲劳破损失效。因此,改 善和提高材料的表面性能,就成为提高疲劳强度、 延长使用寿命的重要工艺措施。表面形变强化就 是近年来国内外广泛研究应用的工艺之一,金属 表面喷丸强化工程就是其代表性技术。
图为不同弹丸速度和喷丸时间的弧高度值曲 线。当喷丸时间延长时, 弧高度先增大,之后逐渐平 稳,呈饱和趋势。弹丸速度提高(喷丸机叶轮 转速提 高),则弧高度全面增大。生产实际中以弧高度的饱和 值作为喷丸 强度。
第六章 表面改性技术 6.1 金属表面形变强化
2)所谓覆盖率是指强化后表面弹坑占据的面积与总强化表面的比值。 喷丸覆盖率的影响因素:零件材料的硬度、弹丸直径、喷射角度及距离、 喷丸时间等。
喷丸强化用的弹丸,常用的有三种:
1) 铸铁弹丸 碳质量分数物为2.75-3.60%,硬度约为 HRC58-65,退火后硬度为HRC30-57 。铸铁弹丸的价格低廉。
2) 钢弹丸 当前使用的钢弹丸一般是将含碳量为0.7%的 弹簧钢丝(或不锈钢丝),切制成段,经磨圆加工制成,直径 为0.4-1.2mm。硬度HRC45-50为最适宜。钢弹丸的组织最 好为回火马氏体或贝氏体。
表面强化层的组织:
第六章 表面改性技术 6.1 金属表面形变强化
强化后残余应力的分布规律 表面为残余压应力,心部为残余拉应力,最表 面层由于应力松驰,其残余应力稍有降低,故曲 线上有“抬头”现象。
第六章 表面改性技术 6.1 金属表面形变强化
疲劳强度随表面残余压应力的增加而增加
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化
3)表面粗糙度的影响因素:零件材料的强度和硬度、弹丸直径、喷射 角度及速度、零件的原始表面粗糙度。
在其他条件相同的情况下,零件材料的强度和表面硬度值越高,塑 性变形越困难,弹坑越浅,表面粗糙度值越小;
3) 玻璃弹丸 其应用是在近十几年发展起来的,已在国防 工业中获得应用。玻璃弹丸的直径为0.05—0.40 mm范围,硬 度HRC46-50。
此章 表面改性技术 6.1 金属表面形变强化
喷丸强化
强化用的弹丸与清理、成型、校形用的弹丸不同,必须 是因球形,切忌有棱角,以免损伤零件表面。
喷丸强化是当前国内外广泛应用的一种表面强化 方法,即利用高速弹丸强烈冲击零件表面,使之产 生形变硬化层并引进残余压应力。已广泛用于弹簧、 齿轮、链条、铀、叶片、火车轮等零部件,可显著 提高金属的抗疲劳,抗应力腐蚀破裂、抗腐蚀疲劳、 抗微动磨损、耐点蚀等的能力。
第六章 表面改性技术 6.1 金属表面形变强化
喷丸强化设备主要有两类:
(2)气动式喷丸机适用于要求喷丸强度较低、 品种多、批量小、形状复杂、尺寸较小的零件。
第六章 表面改性技术 6.1 金属表面形变强化
(2)气动式喷丸机 压缩空气式
第六章 表面改性技术 6.1 金属表面形变强化
重力式喷丸机结构 比吸入式复杂,适合 使用比重、直径较大 的金属弹丸。
弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强 度就越大。
喷丸形成的残余压应力可以达到零件材料抗拉强度的60%,残余压 应力层的深度通常可达0.25mm,最大极限值为1mm左右。
喷丸强度需要一定的喷丸时间来保证,经过一定时间,喷丸强度达 到饱和后,再延长喷丸时间,强度不再明显增加。
在喷丸强度的阿尔门试验中,喷丸强度的表征为试片变形的拱高。
喷丸强化原理:
1)形成形变硬化层,在 此层内产生两种变化:
一是亚晶粒极大的细化, 位错密度增高,晶格畸变增 大;
二是形成了高的宏观残余 压应力。
2)表面粗糙度略有增大, 但却使切削加工的尖锐刀痕 圆滑。
第六章 表面改性技术 6.1 金属表面形变强化
表面强化层的组织 变化:
第六章 表面改性技术 6.1 金属表面形变强化
一般来说,黑色金属制件可以用铸铁丸、钢丸和玻璃丸。 有色金属和不锈钢制件则需采用不锈钢丸或玻璃丸。
第六章 表面改性技术 6.1 金属表面形变强化 喷丸强化设备主要有两类: (1)机械离心式喷丸机,适用于要求喷丸强度高、 品种少、批量大、形状简单、尺寸较大的零件。
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化
直接加压式喷丸 机
第六章 表面改性技术 6.1 金属表面形变强化
表示喷丸强化质量的三个参数:喷丸强度、覆盖率、 表面粗糙度。
第六章 表面改性技术 6.1 金属表面形变强化
1)影响喷丸强度的工艺参数主要有:弹丸直径、弹流速度、弹丸流量、 喷丸时间等。
在规定的喷丸强度条件下,零件的硬度低于或等于标准试片硬度时, 覆盖率能达到100%;反之,覆盖率会下降。
在相同的弹丸流量下,喷嘴与工件的距离越长、喷射的角度越小、 弹丸直径越小,达到覆盖率要求的时间就越短。
喷丸强化时,应选择大小合适的弹丸、喷射角度及距离,使喷丸 强度和覆盖率同时达到要求值。
通常覆盖率要求在100% - 200%,有些零件,如曲轴应用可能要求覆 盖率高于200%。
第六章 表面改性技术 6.1 金属表面形变强化
金属表面形变强化方法及其应用
常用的金属材料表面形变强化方法主要有喷丸、滚压和内孔
挤压等强化工艺。
表面滚压强化示意图。对于圆角、沟槽等皆可通过该方法获
得表层形变强化,并引进残余压应力。
内孔挤压是使孔的内表面获得形变强化的工艺措施,效果显
著。
表面滚压
第六章 表面改性技术 6.1 金属表面形变强化
第六章 表面改性技术 6.1 金属表面形变强化 阿尔门试验
弧高度测试时采用标准化的弧高度试片,也称 Almen试片。试片 分N、A、C三种 ,其材料和硬度都有规定,长度和宽度也固定,只是厚 度不同。其中应用较多的为A试片(厚1.27mm),适用于中等喷丸强度。
试片在专用的夹具中,接受在一组选定的工艺参数条件下进行的喷 射,然后测量其变形后凸弧的高度作为喷丸强度的量度。弧高度单位用 mm表示。例如,30A表示 A试片弧高度为0.3mm。
相关主题