本科生毕业设计(论文)文献综述文献综述题目:Ti基非晶合金的制备以及低温力学性能姓名:孙驰学院:材料学院班级:04320701指导教师:程焕武Ti基非晶合金的制备以及低温力学性能文献综述1.非晶合金1.1非晶合金概述非晶合金材料是20世纪后期材料学领域发展迅速的新型材料,是亚稳金属材料的重要组成部分。
从组成物的原子模型考虑,物质可分为两类:一类为有序结构,另一类为无序结构。
晶体为典型的有序结构,而气态,液态和非晶态固体都属于无序结构。
在非晶体中的原子,分子的空间排列不呈现周期性和平移对称性,晶态长程有序受到破坏,知识由于原子间的相互关联作用,使其在几个原子间距的区间内仍然保持着有序特征,即具有短程有序,人们把这样一类特殊的物质状态统称为非晶态[1]。
非晶合金长程无序但短程有序,是指原子在空间排列上不呈周期性和平移对称性,但在1-2nm的微小尺度内,与近邻或次近邻原子间的键合具有一定的规律性。
短程有序可分为化学短程有序和几何短程有序。
化学短程有序是指合金元素的混乱状态,即每个合金原子周围的化学成分与平均成分不同的度量;几何短程有序包括拓扑短程序和畸变短程序。
非晶合金的微观结构与液态金属相似,但又非完全相同,液态金属的短程有序范围约为4个原子间距,而非晶合金约为5-6个原子间距,前者中原子可以做大于原子间距的热运动,后者的原子主要做运动距离小于一个原子间距的热运动。
非晶合金结构特征可以用径向分布函数RDF(r)=4πr2ρ(r)加以描述。
它表示以某个原子为中心,在半径r,厚度为d(r)的球壳内的平均原子数。
非晶合金的RDF(r)上出现清晰的第一峰和第二峰,没有可分辨的其它峰出现。
在X射线衍射谱上,不存在晶体所特有的尖锐衍射峰,而是出现宽展的馒头峰。
它的电子衍射花样是由较宽的晕和弥散的环组成,不存在表征晶态的任何斑点和条纹[2]。
1.2非晶合金与块状非晶合金的发展历史历史上第一次制备出非晶的是Kramer于1938年利用蒸发沉积的方法实现的,此后不久,Brenner等声称用电沉积法制备出了Ni-P非晶合金。
1960年Duwez等人用快速凝固方法第一次制备出了Au75Si25非晶合金,这标志了非晶合金的诞生,这种快速凝固法是将Au75Si25金属直接喷射到Cu基底上直接激冷得到的,这也开创了熔体激冷技术制备非晶合金的历史[3]。
美国物理学家Turnbull[4]通过水银的过冷实验,提出了液态金属可以过冷到远离平衡熔点以下而不产生形核与长大的结论。
根据他的理论:如果冷却速度足够快,温度最够低,几乎所有材料都能形成非晶态固体。
而且他的研究中还发现Au-Si合金系中最容易形成金属玻璃的成分范围是在Au-Si的二元合金的热力学平衡共晶点附近,并提出了著名的评价合金系非晶形成能力的判据,即约化玻璃转变温度Tg/Tm。
这一判据的提出为寻找其他高非晶形成能力合金系提供了非常有效的指导。
上世纪70-80年代时期,非晶合金主要集中研究Fe基,Nd基等非晶薄带和细丝上,但是形成非晶所必需的高冷却速率限制了非晶的几何尺寸,固限制了非晶合金的进一步应用。
大块状非晶合金由此衍生出来。
1974年Chen[5]等人用吸铸的方式制备出了世界上第一块毫米级的Pd-Cu-Si块状非晶合金,1982年Turnbull等人采用[6]B2O3对Pd40Ni40P20合金熔体进行渣化处理以抑制合金中非均质形核,临界冷却速度仅为10K/s,这是由于通过净化去除了合金熔体的杂质,从而避免了冷却过程中的异质形核。
而大块非晶合金的真正突破是在20世纪90年代,日本Inoue研究组[7]和美国W.L.johnson研究组[8]各自独立研制出了一系列多元块状非晶合金。
最具代表性的是Zr-Ti-Cu-Ni-Be合金体系,非晶形成能力已接近氧化物玻璃。
实验得出了两点结论,一是非贵重金属元素为主的多元合金组合通过合理的成分设计也可以得到BMG,二是在普通铸造条件下就可以得到BMG,这也是BMG得以产业化生产,标志着非晶合金的研究从以提高冷却速度为主的时代过渡到了一成分设计为主的BMG时代,非晶合金有了一个十分光明的前景。
近年来,非晶合金发展也是十分迅速的,美国橡树岭国家实验室的吕昭平和C.T.Liu教授制备了厘米级的非晶钢,中科院物理所得汪卫华老师带领的研究小组做出了具有超大塑性的Zr基大块非晶合金。
清华大学姚可夫老师的研究小组做出了超大塑性Pd基大块非晶合金。
1.3非晶合金的性能非晶合金由于具有短程有序而长程无序的结构特点决定了其优异而独特的力学电磁学及耐腐蚀性能性能。
首先来说,相同成分的块状非晶合金与晶态合金相比,具有较低的弹性模量,但其弹性应变量可达2%左右,而晶体材料总是小于1%;而且,非晶合金具有极高的弹性比功,Zr基块状非晶合金的弹性比功为19.0MJ/m2 而弹性最好的弹簧钢弹性比功仅为2.24 J/m2 [9]。
在Tg温度以上的过冷液态温度区域,非晶态合金表现出高应变超塑加工能力,如Zr基合金最大的延伸率为350%,La基为20000%,Fe为240%。
而在温度远低于Tg 温度时,非晶态合金则表现出比晶态材料高2—3倍的断裂强度以及硬度[10]。
此外,Fe-Si-B等非晶合金具有优异的软磁性能,其磁损小,电阻率大可以替代传统硅钢片制作的电力变压器,并且大大降低了铁损耗。
1.4非晶合金的形成原理合金熔体在降温过程中产生非晶相是一个受到动力学影响的基本平衡转变,在性质上接近二级相变。
形成非晶相是与形成晶相(包括平衡相与亚平衡相)相竞争的过程,要使合金形成块体非晶,首先应使其合金熔体具有合理结构,这种结构与合金的种类、组元原子半径差及原子问的化学交互作用有关,决定了非晶形成过程中的热力学和动力学;其次,应有适当高的冷却速度;减少或消除异质形核[11]。
首先来说,临界冷却速度是公认的衡量玻璃形成能力的最重要的指标,适用于描述任何体系的玻璃形成能力。
临界冷却速率Rc=(Tm-Tn)/tn (式中Tm为合金熔点,Tn 和tn分别为鼻尖处所对应的温度与时间),当以高于临界冷速的冷却速度降温时,将会避免结晶,从而得到非晶组织。
因此,临界冷速足越小,玻璃形成能力越强。
由于Tn和tn均难以直接得到。
用上式精确计算Rc有困难。
因此可以用下式来确定临界冷却速率:式中R是冷却速度,b是与材料有关的常数,Tl c熔化结束温度,Txc是凝固开始温度。
非晶合金的形成过程就是抑制晶体形核和长大的过程。
晶体的形核过程主要受制于2 个互相竞争的因素: 原子构形由液态转化为固态引起的自由能的变化,这个因素是晶胚不断长大的驱动力; 晶胚形成后导致液/固界面存在所需要的能量,这个因素制约着晶胚的形成和晶核的长大。
这2个因素之间的竞争将决定非晶合金的形成。
已有的研究[12]表明,有序结构将有利于降低过冷液态金属的自由能这有利于非晶合金的形成。
但是,有序结构的存在也影响液/固界面能[13]。
当液态金属中局域结构的对称性与竞争晶态相的对称性相似时, 液/固界面能将大大降低,甚至可以降低1一2 数量级[14]。
反之亦然。
如上所述,液态金属结构亚稳特性使其局域结构具有多样性,这种多样性将严重影响其随后的结晶行为,进而影响其非晶形成能力及获得的非晶合金的结构和性能。
也就是说,不同凝固条件下的合金熔体形成非晶合金样品的尺寸不同。
2 Ti基非晶合金概述Ti基非晶合金是指在非晶合金成分中Ti元素所占原子百分比大于50%的非晶态金属。
2.1 Ti基合金的发展历史相对于一般块状非晶合金,Ti合金由于高的比强度和较好的生物相容性被广泛应用在航空,航天以及生物材料等领域。
而Ti基合金无疑比相应晶态合金具有更高的强度和耐磨耐腐蚀性能,这些必然会进一步促使Ti基合金的发展研究。
自1998年,Inoue小组[15-16]相继开发出具有毫米级尺寸的Ti基非晶合金,Kim等人基Ti-Cu-Ni-Sn合金体系的基础上,通过调整合金成分,引入Zr和小尺寸原子Be使得该合金形成非晶的尺寸增加到8mm[17-18]。
为了消除非晶合金中有害元素Be的危害,Ma[19]等人基于Ti-Cu-Ni三元合金基础之上,开发出具有高玻璃形成能力和良好性能的合金Ti41.5Zr2.5Hf5Cu43.5Ni7.5Si1。
为了进一步提高非晶合金的形成尺寸以满足材料作为结构材料的尺寸要求,Guo[20]等人通过优化合金成分获得了形成非晶尺寸超过14mm的Ti基合金,该合金同时还具有高达5%的塑性应变。
2.2 Ti基非晶合金的力学性能钛基块体非晶合金是一种极具应用潜力的轻质高强材料[21],其具有高强度,低模量,耐腐蚀等优异性能外,还具有低密度低成本的优势。
Park等通过元素添加的方法制备了临界尺寸为10mm的块体Ti-Zr-Cu-Ni-Be系非晶合金[22]。
通过西北工业大学姚健,李金山等人研究Ti40Zr25Ni8Cu9Be18的力学性能发现其在低温时的压缩强度明显高于室温时的压缩强度;且随着应变速率的增大,低温压缩强度增加的幅度较大,即正应变速率敏感因子增大;在液氮温度和低应变速率条件下,光滑断面的出现说明低温对降低粘度起着阻碍作用,粘度降低的量级没有达到形成脉状花样所需要的要求;随着应变速率的增加,剪切断口脉状花样的出现说明高应变速率能够明显降低剪切面粘度[23]。
下图所示为Til2Zrl0Si5Fe2Sn非晶合金室温下的应力应变曲线。
由图可见,该非晶样品在弹性变形后,发生了明显的塑性变形,此后随着变形程度增加,强度逐渐增大,直至断裂。
通过分析计算可得非晶钛合金抗拉强度为399 MPa,屈服应力为329 MPa,断裂延伸率为2.5%,弹性模量为39 GPa,较晶态材料更接近于人体骨的模量值。
2.3 常见Ti基非晶合金的制备方法急冷法是最早的制备非晶的方法,其原理是力求增大合金样品比表面积,并设法减小熔体与冷却介质的界面热阻以期达到高的冷却速率。
雾化法和单辊法是最为常用的两种方法。
雾化法主要用来制取非晶态和晶态粉材。
其原理是通过高速气体流冲击金属液流使其分散为微小液滴,从而实现快速凝固。
这种方法设备简单,操作方便,易于产业化生产。
单辊法是利用快速旋转的铜辊,将喷敷其上的液态金属经快速凝固后甩离辊面,形成厚度约几到几十微米的非晶及微晶带材。
该法可以获得106 K/s的冷却速率,是常用方法之一[24]。
单棍旋转法简称MS法,其通过一定转速的铜质单辊将熔体制成非晶或非晶基体上弥散分布微晶相得薄带。
该方法使用方便,冷却速度大,易调节,可进行连续生产。
气体雾化法通常冷却速度可达102—104 K/s,采用超声速气流可明显改善粉末的尺寸分布,进一步提高冷却速度。
另外,冷却介质是该工艺中一个重要制约因素,由于氮气的传热速度快,采用氮气作为射流介质,冷速比用氢气大数倍。