当前位置:文档之家› 材料论文Inconel718镍基高温合金分析与研究-午虎特种合金技术部

材料论文Inconel718镍基高温合金分析与研究-午虎特种合金技术部

1.4 Inconel 718 化学成分 该合金的化学成分分为 3 类:标准成分、优质成分、高纯成分,材料论文】 Inconel 718 镍基高温合金分析与研究 -午虎特种合金技术部Inconel 718 概述Inconel 718 合金是以体心四方的 γ " 和面心立方的 γ′相沉淀强化的镍基高温合金,在 -253 ~ 700 ℃温度范围内具有良好的综合性能,650 ℃以下的屈服强度居变形高温合金的首位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能 ,以及良好的加工性能、焊接性能和 长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温 度范围内获得了极为广泛的应用。

该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及 组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程, 就能 获得可满足不同强度级别和使用要求的各种零件。

供应的品种有锻件、 锻棒、轧棒、 冷轧棒、 圆饼、环件、板、带、丝、管等。

可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构 件、机匣等零部件在航空上长期使用。

相近牌号 Inconel 718( 美国 ),NC19FeNb ( 法 国) 材料的技术标准 《焊接用高温合金冷拉丝材规范》HB 6702-1993 《WZ8 系列用 Inconel 718 合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》GJB 1953 《 航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317 《 航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611 《 航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993 《 转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《 航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》HB 6072 《WZ8 系列用 Inconel 718 合金棒材》 见表 1-1 。

优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源 和增1.1 Inconel 718 材料牌号 Inconel 7181.2 Inconel 718 1.3 Inconel 718 GJB 2612-1996加强化相的数量,提高抗疲劳性能和材料强度。

同时减少有害杂质和气体含量。

高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。

核能应用的Inconel 718 合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。

当ω(B)≤0.002% 时,为与宇航工业用的Inconel 718 合金加以区别,合金牌1-1%1.5 Inconel 718 热处理制度合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的力学性能。

合金热处理制度分 3 类:Ⅰ:(1010 ~1065)℃± 10 ℃,1h ,油冷、空冷或水冷+720 ℃± 5℃,8h ,以50℃/h 炉冷至620℃± 5℃,8h ,空冷。

经此制度处理的材料晶粒粗化,晶界和晶内均无δ 相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。

Ⅱ:(950 ~980)℃± 10 ℃,1h ,油冷、空冷或水冷+720 ℃± 5 ℃,8h ,以50℃/h 炉冷至620℃± 5℃,8h ,空冷。

经此制度处理的材料有δ 相,有利于消除缺口敏感性,是最常用的热处理制度,也称为标准热处理制度。

Ⅲ:720℃± 5 ℃,8h,以50℃/h 炉冷至620 ℃± 5℃,8h ,空冷。

经此制度处理后,材料中的δ 相较少,能提高材料的强度和冲击性能。

该制度也称为直接时效热处理制度。

1.6 Inconel 718 品种规格和供应状态可以供应模锻件(盘、整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等、交货状态由供需双方商定。

丝材以商定的交货状态成盘状交货。

1.7 Inconel 718 熔炼和铸造工艺合金的冶炼工艺分为 3 类:真空感应加电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。

可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。

1.8 Inconel 718 应用概况与特殊要求制造航空和航天发动机中的各种静止件和转动件,如盘、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件等和焊接结构件;制造核能工业应用、 Inconel 718 力学性能的各种弹性元件和格架;制造石油和化工领域应用的零件及其他零件。

近年来, 在对该合金研究不断深化和对该合金应用不断扩大的基础上, 为提高质量和降低成 本,发展了很多新工艺: 真空电弧重熔是采用氦气冷却工艺, 有效减轻铌偏析;采用喷射成 型工艺,生产环件, 降低生产成本和缩短生产周期;采用超塑成型工艺,扩大产品的生产范 围。

、 Inconel 718 物理及化学性能2.1 Inconel 718 热性能 2.1.1 Inconel 718 熔化温度范围 2.1.2 Inconel 718 热导率 见表 2-2.1.4 Inconel 718 线膨胀系数 见表 2-3 ; 2.2 Inconel 718 密度 ρ =8.24g/cm3 2.3 Inconel 718 电性能表 2-2[2]2-3[2]2.4 Inconel 718 2.5 Inconel 718 化学性能2.5.1 Inconel 718 抗氧化性能 在空气介质中试验 100h 后的氧化速率见表 2-4 。

表2-43-13-1[1] 1260 ~1320 ℃。

四、Inconel 718 组织结构4.1 相变温度γ " 相是该合金的主要强化相,其最高稳定温度是650 ℃,开始固熔温度为840 ~870 ℃,完全固熔温度是950 ℃,γ′相也是该合金的强化相,但数量少于γ " 相,其析出温度是600 ℃,完全熔解温度是840 ℃;δ相的开始析出温度是700 ℃,析出峰温度是940℃,980 ℃开始熔解,完全熔解温度是1020 ℃。

4.2 时间-温度-组织转变曲线见图4-1。

4.3 合金组织结构4.3.1 合金标准热处理状态的组织由γ基体、γ′、γ"N、bCδ、相组成。

γ"(Ni3Nb) 相是主要强化相,为体心四方有序结构的亚稳定相,呈圆盘状在基体中弥散共格析出,在长期时效或长期应用期间,有向δ相转变的趋势,使强度下降。

γ′T(i)N)相i3(的Al数量、次于γ " 相,呈球状弥散析出,对合金起一部分强化作用。

δ 相主要在晶界析出,其形貌与锻造期间的终锻温度有关,终锻温度在900 ℃,形成针状,在晶界和晶内析出;终锻温度达930 ℃,δ 相呈颗粒状,均匀分布;终锻温度达950 ℃,δ 相呈短棒状,分布于晶界为主;终锻温度达980 ℃,在晶界析出少量针状δ相,锻件出现持久缺口敏感性。

终锻温度达到1020 ℃或更高,锻件中无δ相析出,晶粒随之粗化,锻件有持久缺口敏感性。

锻造过程中,δ 相在晶界析出,能起到钉扎作用,阻碍晶粒粗化。

4.3.2 L 相是变形Inconel 718 合金中不允许存在的相,该相富铌,存在于铸锭枝晶间,降低铸锭初熔点,铸锭中L 相固溶温度和均匀化时间的关系见图4-2。

4.3.3 晶粒度4.3.3.1 合金在高温固熔(保温2h )时的晶粒长大倾向见图4-3 。

4.3.3.2 棒材(原始晶粒9~9.5 级)经不同温度加热并以不同变形量锻造变形后,再经过标准热处理(固溶温度965℃,1h ),其晶粒度的变化见表4-1。

4.3.3.3 锻件技术标准规定,普通锻件平均晶粒度为 4 级,允许个别 2 级,高强锻件平均晶粒度为8 级,允许个别 2 级;直接时效锻件平均晶粒度应为10 级或更细。

4.3.4 直接时效的锻件在600 ~700 ℃长期时效500h 后,析出相数量的变化见表4-2。

表4-1[19]表4-2[11]5.1 成型性能5.1.1 因Inconel 718 合金中铌含量高,合金中的铌偏析程度与冶金工艺直接相关。

电渣重熔和真空电弧熔炼的熔炼速度和电极棒的质量状态直接影响材质的优劣。

熔速快,易形成富铌的黑斑;熔速慢,会形成贫铌的白斑;电极棒表面质量差和电极棒内部有裂纹,均易导致白斑的形成,所以,提高电极棒质量和控制熔速及提高钢锭的凝固速率是冶炼工艺的关键因素。

为避免钢锭中的元素偏析五、Inconel 718 工艺性能与要求过重,至今采用的钢锭直径不大于508mm 。

均匀化工艺必须确保钢锭中的L 相完全熔解。

钢锭两阶段均匀化和中间坯二次均匀化处理的时间,根据钢锭和中间坯的直径而定。

均匀化工艺的控制与材料中的铌偏析程度直接相关。

目前生产中采用的1160 ℃,20h ± 1180 ℃,44h 的均匀化工艺,尚不足以消除钢锭中心的偏析,因此建议采用以下均匀化工艺:1. 1150 ~1160 ℃,20 ~30h +1180 ~1190 ℃,110 ~130h ;2. 1160 ℃,24h +1200 ℃,70h[20] 。

5.1.2 经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120 ℃。

锻件的锻造工艺应根据锻件使用状况和应用要求,结合生产厂的生产条件而定。

开坯和生产锻件是,中间退火温度和终锻温度必须根据零件所要求的组织状态和性能来确定,一般情况下,锻造的终锻温度控制在930 ~950 ℃之间为宜。

各类锻件的锻造温度和变形程度见表5-1 。

表5.1.3 与板材冷成形有关的性能见表5-2 。

5.1.4 锻件的变形程度、终锻温度和晶粒尺寸之间的关系见图5-1 。

相关主题