《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]Ta 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。
解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R 2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。
解:其坐标为:x =( 3, -3, 2,-1 )T4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。
证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。
余略。
5.已知R 4中的两组基:T T T T 1234=[1,0,0,0],=[0,1,0,0],=[0,0,1,0],=[0,0,0,1]αααα和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。
解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:11234205612927331336112923x 112190018101373926x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-----1=--27--6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。
解:所求的坐标是:(3,111112,...,2, (2)n n n n C C C ----)T7.已知T T T T1212=[1,2,1,0],=[-1,1,1,1],=[2,-1,0,1],=[1,-1,3,7]ααββ,求V 1=12212{,}V ={,}span span ααββ与的和与交的基和维数。
解:V 1+V 2的一组基为T T T121=[1,2,1,0],=[-1,1,1,1],=[2,-1,0,1]ααβ,所以维数为3 V 1∩V 2的一组基是:123[5,2,3,4]Tββ-+=-,所以维数为1。
8.设T 是n 维线性空间V 上的一个线性变换,对某个ξ∈V ,有T k -1(ξ)≠0,T k (ξ)=0。
试证:21,(),(),...,()k T T Tξξξξ-线性无关。
证明:设21123()()...()0k k x x T x T x T ξξξξ-++++=………………(*)下证123...0k x x x x =====即可。
对(*)两边的向量作线性变换:T k -1,根据T k -1(ξ)≠0,T k (ξ)=0,得到10x = 由此(*)变为2123()()...()0k k x T x T x T ξξξ-+++=…………….. (**)对(**)两边作线性变换:T k -2,根据T k -1(ξ)≠0,T k (ξ)=0,得到20x =依次进行,得到123...0k x x x x =====,即21,(),(),...,()k T T T ξξξξ-线性无关。
9.设n 维线性空间V 上线性变换T ,使对V 中任何非零向量ξ都有T n -1(ξ)≠0,T n (ξ)=0。
求T 在某一基下的矩阵表示。
解:任取V 中一非零向量ξ,因T n -1(ξ)≠0, T n (ξ)=0,所以由第8题的结果,有21,(),(),...,()n T T T ξξξξ-是V 中的一组基。
则T 在此基下的矩阵:0,0,......,0,01,0,.......,0,00,1,.......,0,0.................0,0,......,1,00,0,......,0,0⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭10.设T 是线性空间R 3的线性变换,它在R 3中基123{,,}ααααB =下的矩阵表示是:A =123103215⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦求T 在基112123123{,,}ββαβααβαααB ===+=++下的矩阵表示。
解:T 在基112123123{,,}ββαβααβαααB ===+=++下的矩阵表示是:B =244346238⎡⎤⎢⎥---⎢⎥⎢⎥⎣⎦11.设T 在基123{[1,1,1],[1,0,1],=[0,1,1]}T T TααααB ==-=-下的矩阵表示是:A =101110121⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦(1) 求T 在基123{[1,0,0],[0,1,0],=[0,0,1]}T T TεεεεB ===下的矩阵表示。
(2) 求T 的核和值域。
(3) 求T 的特征值和特征向量。
解:(1)T 在基123{[1,0,0],[0,1,0],=[0,0,1]}T T TεεεεB ===下的矩阵表示是:B =110101111112101110011220111121101302-----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦(2)核空间N (T )={(0,0,0)T }值域 R (T )=R 3。
(3)特征值为:1232,(1)/2,(1)/2λλλ===对应的特征向量是:1230332,44166x x x ⎛⎫⎛⎫--⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.求矩阵A 的列空间R (A )={y ∈R 3|y =Ax ,x ∈R 3}和核空间N (A )={x ∈R 3|Ax =0}。
其中:(1)A =116042116⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(2)A =0241453170510-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥-⎣⎦解:(1)列空间为R (A )=11{0,4}11span ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,核空间为N (A )=11{1}2span -⎛⎫ ⎪- ⎪ ⎪⎝⎭(2) 列空间为R (A )=0214{,}3105span ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,核空间为N (A )=3{2}1span -⎛⎫ ⎪⎪ ⎪⎝⎭13.设V 是一线性空间。
123{,,}ααααB =是V 的一组基 ,线性变换T 在基123{,,}ααααB =在的矩阵B 分别如下,求T 的特征值和特征向量,并判断T 是否可对角化。
(1)010440216⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦--, (2)01110110⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1 ,(3)00101000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1,(4)0210330⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-2-1- 解:(1)特征值为: 1232λλλ===特征向量是: 12102,001x x ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭不可对角化(2)特征值为:1232,1λλλ===-特征向量是: 1231101,0,1111x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可对角化(3)特征值为:1231,1λλλ=-==特征向量是: 1231100,0,1110x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭可对角化(4)特征值为:1230,,λλλ=== 特征向量是: 略 可对角化14.略15.设欧氏空间P 2(t )中的内积为1,()()f g f t g t dt <>=⎰(1)求基{1,t ,t 2}的度量矩阵。
(2)采用矩阵形式计算f (t )=1-t +t 2与g (t )=1-4t -5t 2的内积。
(3)用Schmidt 正交化方法求P 2(t )的标准正交基。
解:(1) 111220001,1111,1,dt t tdt t t dt <>=<>=<>=⎰⎰⎰11=,=,=,23 111223224000,,,t t t dt t t t dt t t t dt <>=<>=<>=⎰⎰⎰111=,=,=,345 所以度量矩阵为11123111234111345⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)1112311119,(1,1,1)442345111345f g ⎡⎤⎢⎥⎛⎫⎢⎥⎪⎢⎥<>=--=- ⎪⎢⎥ ⎪-⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦(3)所以标准正交基是:12231,1)216t t t εεε==-=-+()《高等工程数学》――科学出版社版习题答案(第二章)P501. 求下列矩阵的特征值、代数重数核几何重数,并判断矩阵是否可对角化(1)110020112⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦- (2)011121213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-- (3)411030102⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-解:(1)特征值:1231(1)()λλλ=代数重数和几何重数均为,==2代数重数和几何重数均为2可对角化。
(2)特征值:1231(1)()λλλ=代数重数和几何重数均为,==2代数重数为2和几何重数为1不可对角化。
(3)特征值:123(1)λλλ===3代数重数为3、几何重数均为不可对角化。
1222222223112233231,111,,,2121)21,,61,18016t t t t t t t t t t t εβββεβεεεεββε==-<>=-<>==-=-<>-<>=-+<>==-+()2. 求下列矩阵的不变因子、初等因子和Jordan 标准形(1)3732524103⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-----(2)413002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10-1 (3)1234012300120001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)3000013000001100002000112⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-解:(1)不变因子是:123d d d i λλλ+=1,=1,=(-1)(-i)()初等因子是:i λλλ+(-1),(-i),()Jordan 标准形是:1000000i i ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦(2)不变因子是:123d d d λ3=1,=1,=(-3)初等因子是:λ3(-3)Jordan 标准形是:310031003⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(3)不变因子是:1234d d d d λ4=1,=1,=1,=(-1)初等因子是:λ4(-1)Jordan 标准形是:1100011000110001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)不变因子是:12345d d d d d λλλλλ=1,=1,=1,=(-2)(-3),=(-1)(-2)(-3)初等因子是:λλλλλ(-2),(-3),(-1),(-2),(-3)Jordan 标准形是:1000002000002000003000003⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦3. 设(1)110A 0012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-=22(2)33A 613⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦--1=-7-11-(3)010A 111011⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=-- 求可逆矩阵P ,使得P -1AP 是Jordan 标准形解:(1)A 的特征值为1231λλλ=,==2 对应的特征向量是:121,ααTT=(,0,-1)=(0,0,1)二级根向量是:(2)2αT=(-1,1,0)(2)122101(,,0110002102P P AP ααα--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1)=0-1100(2)A 的特征值为123λλλ===2 对应的特征向量是:11αT=(,2,1)二级根向量和三级根向量是:(2)(3)11,ααT T=(1,3,3)=(0,2,2)(2)(3)111110(,,3232102102P P AP ααα-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1)=21200(3)此题数据不便于求解特征值,A 的特征多项式是:3210()|A|11121011f I λλλλλλλλ-⎡⎤⎢⎥=---=-⎢⎥⎢⎥-⎣⎦=-+4. 试求第2题 最小多项式。