当前位置:文档之家› 过滤器概述

过滤器概述

过滤器概述概述过滤材料既有效地拦截尘埃粒子,又不对气流形成过大的阻力。

杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。

效率过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。

小于0.1mm(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5mm的粒子主要作惯性运动,粒子越大,效率越高。

阻力纤维使气流绕行,产生微小阻力。

无数纤维的阻力之和就是过滤器的阻力。

过滤器阻力随气流量增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,减小过滤器阻力。

动态性能被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。

被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。

被捕捉的粉尘大都聚集在过滤材料的迎风面上。

滤料面积越大,能容纳的粉尘越多,过滤器寿命越长。

使用寿命滤料上积尘越多,阻力越大。

当阻力大到设计所不允许的程度时,过滤器的寿命就结束。

有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种二次污染时,过滤器也该报废。

静电若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。

因静电使粉尘改变运动轨迹并撞向障碍物,静电力参与粘住的工作。

2效率在决定过滤效率的因素中,粉尘“量”的含义多种多样,由此计算和测量出来的过滤器效率数值也就不同。

实用中,有粉尘的总重量、粉尘的颗粒数量;有时是针对某一典型粒径粉尘的量,有时是所有粉尘的量;还有用特定方法间接地反映浓度的通光量(比色法)、荧光量(荧光法);有某种状态的瞬时量,也有发尘全过程变化效率值的加权平均量。

对同一只过滤器采用不同的方法进行测试,测得的效率值就会不一样。

离开测试方法,过滤效率就无从谈起。

◎试验方法计重法 Arrestance试验尘源为大粒径、高浓度标准粉尘。

粉尘的主要成分是经筛选的、规定地区的浮尘,再掺入规定量的细碳黑和短纤维。

大多数国家规定使用美国亚利桑那荒漠地带的“道路尘”(Arizona Road Dust),中国标准曾规定使用黄土高原某村落的尘土,日本标准规定使用源于日本的“关东亚黏土”。

测量的“量”为粉尘重量。

过滤器装在标准试验风洞内,上风端连续发尘。

每隔一段时间,测量穿过过滤器的粉尘重量或过滤器上的集尘量,由此得到过滤器在该阶段按粉尘重量计算的过滤效率。

最终的计重效率是各试验阶段效率依发尘量的加权平均值。

计重法试验的终止试验的条件为:约定的终阻力值,或效率明显下降时。

这里的所谓“约定”是指客户与试验者间的约定,或试验者自己的规定。

显然,约定终止试验的条件不同,计重效率值就不同。

终止试验时,过滤器容纳试验粉尘的重量称为“容尘量”。

计重法用于测量低效率过滤器,那些过滤器一般用于中央空调系统中的预过滤。

计重法试验是破坏性试验,不能用于制造厂的日常产品性能检验。

相关标准:美国ANSI/ASHRAE 52.1-1992,欧洲EN779-1993,中国GB12218-89。

比色法 Dust-spot试验台和试验粉尘与计重法所用相同。

粉尘“量”为采样点高效滤纸的通光量。

终止试验的条件与计重法条件相似:约定的终阻力值,或效率明显下降时。

比色法用于测量效率较高的一般通风用过滤器,空调系统中的大部分过滤器属于这种过滤器。

比色法曾是国外通行的试验方法,这种方法逐渐被计数法所取代。

严格的比色法是破坏性试验。

相关标准:美国ANSI/ASHRAE 52.1-1992,欧洲EN 779-1993。

大气尘计数法尘源为自然大气中的“大气尘”。

粉尘的“量”为大于等于某粒径的全部颗粒物个数。

测量粉尘的仪器为普通光学或激光尘埃粒子计数器。

效率值为新过滤器的初始效率。

◎过滤器阻力过滤器对气流形成阻力。

过滤器积灰,阻力增加,当阻力增大到某一规定值时,过滤器报废。

新过滤器的阻力称“初阻力”;对应过滤器报废时的阻力值称“终阻力”。

终阻力终阻力的选择直接关系到过滤器的使用寿命、系统风量变化范围、系统能耗。

生物并杀死它们。

经化学处理而使材料与有害气体产生化学反应的吸附称化学吸附。

活性炭靠范德瓦尔斯力抓到气体分子,材料上的化学成分与污染物起反应,生成固体成分或无害的气体。

进行化学处理的主要方法是在活性炭中均匀地掺入特定的试剂,所以经化学处理的活性炭也称“浸渍炭”。

使用过程中,吸附能力会不断减弱,当减弱到某一程度,过滤器报废。

如果仅为物理吸附,用加热或水蒸汽熏蒸的办法可使有害气体脱离活性炭,使活性炭再生。

活性炭材料活性炭材料分颗粒炭、纤维炭、粉炭。

纤维活性炭由含碳有机纤维制成。

它的孔径小(<50Å)、吸附容量大、吸附快、再生快。

常用的纤维基材有酚醛、植物纤维、聚丙烯腈、沥青。

吸附性能吸附容量。

单位活性炭所能吸附污染物的最大量称吸附容量。

不同材料的吸附容量会不同;同一材料对不同气体的吸附容量会不同;温度、背景浓度改变,吸附容量也会变化。

滞留时间。

空气在活性炭层中逗留的时间称滞留时间。

滞留时间越长,吸附越充分。

为保持足够的滞留时间,炭层要足够厚,过滤风速要尽可能低。

使用寿命。

新的活性炭吸附效率高,使用中效率不断衰减,当过滤器下游有害气体接近允许的浓度极限时,过滤器报废。

报废前的使用时间就是使用寿命,也称有效防护时间。

选择性。

一般说来,在物理吸附中易被吸附的有:分子量大的气体、沸点高的气体、挥发性有机气体。

若活性炭经化学浸渍,还可以清除平时难以对付的气体,或突出对某类气体的吸附能力。

活性炭过滤器的选用影响活性炭过滤器吸附效果和使用寿命的主要因素有:污染物的种类和浓度、气流在过滤材料中的滞留时间、空气的温度和湿度。

实际选用时,要根据污染物种类、浓度和处理风量等条件,确定过滤器形式和活性炭种类。

活性炭过滤器的上下游均应有好的除尘过滤器,其效率规格应不低于F7。

上游过滤器防止灰尘堵塞活性炭材料;下游过滤器拦住活性炭本身的发尘名称解释Aerosol,气溶胶固体或液体颗粒物与气体形成的一种相对稳定的悬浮体系。

AFI (Air Filter Institute),美国空气过滤研究所过滤效率的试验方法计重法和比色法首先由AFI使用,有人称AFI效率。

若见到“AFI效率”,你要自己判别是计重效率(Arrestance)还是比色效率(Dust-spot)。

AHU (Air Handling Unit),中央空调器中央空调是最经常见到空气过滤器的地方。

Air Filter,空气过滤器用在中央空调和洁净室时,称为空气过滤器;用在活塞发动机和小型空压机上,它叫空气滤清器。

Arrestance,计重效率对低效率过滤器采用计重法得出的效率。

ASHRAE Efficiency用美国采暖、制冷与空调工程师协会标准ASHRAE 52.1规定方法测出的效率。

一般指的是比色法(dust-spot)效率,有时也称NBS效率、AFI效率。

Chemical Filter,化学过滤器在空调领域,化学过滤器一般指的就是活性炭过滤器。

Deep-Pleat对传统有隔板过滤器的习惯称呼。

DOP 邻苯二甲酸二辛酯DOP为塑料工业一种常用增塑剂,也是一种常见清洗剂。

用0.3mm的DOP液滴做粒子,测量高效过滤器得出的过滤效率称为“DOP效率”。

Dust-Spot,比色法多年来国际流行的,对一般通风用过滤器的测试方法。

Efficiency过滤效率Fiberglass,玻璃纤维常见过滤材料。

FFU (Fan Filter Unit)自带风机的高效过滤单元。

当代集成电路生产中高洁净度厂房流行过滤装置。

GMP (Good Manufacture Practice),药品生产质量管理规范GMP是制药厂必须执行的强制性标准。

HEPA (High Efficiency Particulate Air) Filter,高效过滤器对0.3mm尘埃粒子过滤效率≥99.97%,并且经过规定方法检验合格的过滤器。

家用电器中的HEPA是一般指用HEPA滤纸制作的过滤器。

HEPA Diffuser,高效过滤风口装有高效过滤器的非均匀流洁净室送风装置。

HEPA Panel洁净室用无隔板高效过滤器的习惯叫法。

IAQ (Indoor Air Quality)室内空气品质MPPS (Most Penetratiable Particulate Size),最易穿透粒径测量过滤器对最难过滤颗粒物过滤效率的一种扫描测试方法。

Mini-Pleat无隔板过滤器的习惯称呼。

有时也称为Close-pleated。

Particle Efficiency,计数效率用粒子计数器测量的过滤器效率。

PP (Polypropylene),聚丙烯,丙纶在过滤行业,常指带静电(驻极体)的超细聚丙烯纤维过滤材料。

Pre-filter,预过滤器对下一级过滤器起保护作用的过滤器。

预过滤器可以有各种形式和效率规格。

Pulse-jet Filter,自洁式过滤器带有压缩空气脉冲反吹清灰装置的过滤器和除尘器。

Resistance过滤器阻力。

有时也称Pressure Drop,Differential Pressure,DP。

Sick Building Syndrome,建筑致病症状室内空气差经常被认为是致病元凶。

Synthetic Media化学纤维滤材,又称其为合成纤维。

ULPA (Ultra Low Penetration Air) Filter 超高效过滤器对0.1~0.2mm粒子过滤效率≥99.999%的过滤器(美国)。

对MPPS效率≥99.9995%的过滤器(欧洲)。

对0.12mm粒子过滤效率≥99.999%的过滤器(美国早期)。

Van de Waals Force,范德瓦尔斯力分子与分子,分子团与分子团表面间的一种引力包括取向力、诱导力、色散力。

粉尘粘在过滤介质上,主要靠的是范德瓦尔斯力。

活性炭过滤器吸附化学污染物时,靠的也是范德瓦尔斯力。

Ventilation Filter泛指一般通风用过滤器,以区别洁净室用高效过滤器。

有时也称Ashrae Filter。

VOCs(Volatile Organic Compounds),挥发性有机化合物空调行业指空气中的分子污染物。

集成电路行业又叫AMC典型颗粒一般情况下,最末一级过滤器决定空气净化的程度,上游的各级过滤器只起保护作用,它保护下风端过滤器以延长其使用寿命,或保护空调系统以确保其正常工作。

空调设计中,应首先根据用户的洁净要求确定最末一级过滤器的效率,然后,选择起保护作用的过滤器,如果这级过滤器亦需保护,再在它的上风端增设过滤器。

起保护作用的过滤器统称“预过滤器”。

应妥善匹配各级过滤器的效率。

若相邻两级过滤器的效率规格相差太大,则前一级起不到保护后一级的作用;若两级相差不大,则后一级负担太小。

洁净室末端高效过滤器的使用寿命应为5~15年,影响使用寿命的最主要因素是预过滤器的优劣。

相关主题