当前位置:文档之家› 推荐-基于单片机的电子密码锁的设计课程设计任务书 精品

推荐-基于单片机的电子密码锁的设计课程设计任务书 精品

中北大学信息商务学院课程设计任务书13/14 学年第一学期学院:信息商务学院专业:电子信息工程学生姓名:焦晶晶学号:10050644X07学生姓名:侯战祎学号:10050644X47 课程设计题目:专业综合实践之单片机部分:基于单片机的电子密码锁的设计起迄日期:20XX年12 月30 日~20XX年1月10 日课程设计地点:201,503指导教师:张权系主任:王浩全下达任务书日期: 20XX 年12月30 日课程设计任务书课程设计任务书目录3.2 硬件电路设计 (5)4软件程序设计 (10)1 绪论在当今社会,安全防盗已成为社会问题,而锁自古以来就是防盗的重要工具,目前国内大部分人使用的还是传统的机械锁,然而,眼下假冒伪劣的机械锁互开率非常之高,此外,即使是一把质量过关的机械锁,通过急开锁,甚至可以在不损坏锁的前提下将锁打开。

机械锁的这些弊端为一种新型的锁——电子密码锁,提供了很大的发展空间。

本文从经济实用的角度出发,设计采用单片机为主控芯片,结合外围电路,组成电子密码控制系统,密码锁共6位密码,每位的取值范围为1~8,用户可以自行设定和修改密码。

用户想要打开锁,必先通过提供的键盘输入正确的密码才可以,密码输入错误有提示。

6位密码同时输入正确,锁才能打开。

锁内有备用电池,只有内部上电复位时才能设置或修改密码,因此,仅在门外按键是不能修改或设置密码的,因此保密性强、灵活性高。

其特点如下:1) 保密性好,编码量多,远远大于弹子锁。

随机开锁成功率几乎为零。

2) 密码可变,用户可以随时更改密码,防止密码被盗,同时也可以避免因人员的更替而使锁的密级下降。

3) 误码输入保护,当输入密码多次错误时,报警系统自动启动。

4) 无活动零件,不会磨损,寿命长。

5) 使用灵活性好,不像机械锁必须佩带钥匙才能开锁。

6) 电子密码锁操作简单易行,一学即会。

从目前的技术水平和市场认可程度看,使用最为广泛的是键盘式电子密码锁,该产品主要应用于保险箱、保险柜和取款机,由于人们对安全的重视和科技的发展,许多电子智能锁(指纹识别、IC卡辨认)已在国内外相继面世。

但是这些产品的特点是针对特定的指纹和有效卡,只能适用于保密要求的箱、柜、门等。

而且指纹识识别器在公共场所使用存在容易机械损坏,IC卡还存在容易丢失、损坏等缺点,再加上其成本较高,一定程度上限制了这类产品的普及和推广。

鉴于目前的技术水平与市场的接受程度,键盘式电子密码锁是这类电子防盗产品的主流。

在科学技术不断发展的今天,电子密码防盗锁作为防盗卫士的作用也日趋重要。

电子密码锁是集计算机技术、电子技术、数字密码技术为一体的机电一体化高科技产品,具有安全性高,使用方便等优点。

当今发展已经到了非常高的境界,由于特别是在这几年得到空前发展,无论功能性,稳定性都比较全面,在保密方面已做到人眼识别,,人声识别基本上电影上有的现实也有。

在国外发展比较早,所以应用也比较广泛,主要在较贵重地方,银行,等应用较多,在国内这方面发展也较快,不管自己开发或是引进都有,在重要地方应用也较多,由于价钱比普通较贵,早几年应用较少,现在越来越普及到平常化,未来的发展也会越来越被大众采用,由于它的功能、安全是弹子锁无法相比的[5]。

发展前境也是非常大的。

2系统方案设计2.1 设计目标本设计采用STC89C52单片机为主控芯片,结合外围电路矩阵键盘、液晶显示器LCD1602和密码存储AT24C02等部分组成。

其中矩阵键盘用于输入数字密码和进行各种功能的实现。

由用户通过连接单片机的矩阵键盘输入密码,后经过单片机对用户输入的密码与自己保存的密码进行对比,从而判断密码是否正确,然后控制引脚的高低电平传到开锁电路或者报警电路控制开锁还是报警,组成的电子密码锁系统,能够实现:1.完全正确输入6位密码的前提下,有开锁提示;2.错误输入密码,显示“000000”;3.用户可以自行设定和修改密码;4.只有内部上电复位时才能设置或修改密码。

系统整体设计框图如图2-1所示:图2- 1 系统整体设计框图2.2 主控部分的选择 方案一:采用数字电路控制用以74LS112双JK 触发器构成的数字逻辑电路作为密码锁的核心控制,将密码保存在JK 触发器中,与输入密码通过比较器比较,判断结果是否相符合。

采用数字电路设计的方案好处就是设计简单,但控制的准确性和灵活性差,故不采用。

方案二:采用以单片机为核心的控制方案选用单片机作为系统的核心部件,实现控制与处理的功能。

单片机具有资源丰富、速度快、编程容易等优点。

利用单片机内部的随机存储器(RAM )和只读存储器(ROM )及其引脚资源,外接液晶显示(LCD ),键盘输入等实现数据的处理传输和显示功能,基本上能实现设计指标。

因此综合考虑,本系统采用方案二。

2.3 密码输入方式采用键盘输入方式,由各按键组成的矩阵键盘每条行线和列线都对应一条I/O 口线,键位设在行线和列线的交叉点,当一个键按下就会有某一条行线与某一条列线接触,只要确定接触的是哪两条线,即哪两个I/O 口线,就可以确定哪一个键被触动。

行线设计成上拉口线,初始时被置高电位,列线悬空,初始置低。

通过不断读行线口线,或者中断方式触发键位扫描。

当发现有键按下,将列线逐一置低,其他列线置高,读行线口线。

当某条列线置低时,某条行线也被拉低,则确定这两条线的交点处的按钮被按下。

每个按键都可通过程序赋予功能,从而完成密码识别本方案简单易行。

3硬件系统设计3.1单片机STC89C52功能介绍STC89C52是51系列的一个型号,它是STC公司生产的。

STC89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用STC公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的STC89C52单片机可提供许多较复杂系统控制应用场合。

STC89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,STC89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

STC89C52有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。

其引脚图如图3-1示。

图3- 1 STC89C52引脚分布图STC89C52具体介绍如下:①主电源引脚(2根)VCC(Pin40):电源输入,接+5V电源GND(Pin20):接地线②外接晶振引脚(2根)XTAL1(Pin19):片内振荡电路的输入端XTAL2(Pin20):片内振荡电路的输出端③控制引脚(4根)RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号PSEN(Pin29):外部存储器读选通信号EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

④可编程输入/输出引脚(32根)STC89C52单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根[8]。

P0口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.73.2 硬件电路设计本设计主要由单片机、矩阵键盘、液晶显示器和密码存储等部分组成。

其中矩阵键盘用于输入数字密码和进行各种功能的实现。

由用户通过连接单片机的矩阵键盘输入密码,后经过单片机对用户输入的密码与自己保存的密码进行对比,从而判断密码是否正确,然后控制引脚的高低电平传到开锁电路。

本系统共有两部分构成,即硬件部分与软件部分。

其中硬件部分由电源输入部分、键盘输入部分、复位部分、晶振部分、显示部分,软件部分对应的由主程序、初始化程序、LCD显示程序、键盘扫描程序、启动程序、关闭程序、键功能程序、密码设置程序、EEPROM读写程序和延时程序等组成。

3.2.1 复位电路单片机复位是使CPU和系统中的其他功能部件都处在一个确定的初始状态,并从这个状态开始工作,例如复位后PC=0000H,使单片机从第—个单元取指令。

无论是在单片机刚开始接上电源时,还是断电后或者发生故障后都要复位。

在复位期间(即RST为高电平期间),P0口为高组态,P1-P3口输出高电平;外部程序存储器读选通信号PSEN无效。

地址锁存信号ALE也为高电平。

根据实际情况选择如图3-4所示的复位电路。

该电路在最简单的复位电路下增加了手动复位按键,在接通电源瞬间,电容C1上的电压很小,复位下拉电阻上的电压接近电源电压,即RST为高电平,在电容充电的过程中RST端电压逐渐下降,当RST端的电压小于某一数值后,CPU脱离复位状态,由于电容C1足够大,可以保证RST高电平有效时间大于24个振荡周期,CPU能够可靠复位。

增加手动复位按键是为了避免死机时无法可靠复位。

当复位按键按下后电容C1通过R5放电。

当电容C1放电结束后,RST端的电位由R1与R2分压比决定。

由于R11<<R15 因此RST为高电平,CPU处于复位状态,松手后,电容C1充电,RST端电位下降,CPU脱离复位状态。

R1的作用在于限制按键按下瞬间电容C1的放电电流,避免产生火花,以保护按键触电。

图3- 2复位电路原理图3.2.2 晶振电路ST89C52引脚XTAL1和XTAL2与晶体振荡器及电容C2、C1按图3-5所示方式连接。

晶振、电容C2/C3及片内与非门(作为反馈、放大元件)构成了电容三点式振荡器,振荡信号频率与晶振频率及电容C1、C2的容量有关,但主要由晶振频率决定,范围在0~33MHz之间,电容C2、C3取值范围在5~30pF之间。

根据实际情况,本设计中采用12MHZ做系统的外部晶振[11]。

电容取值为20pF。

图3- 3晶振电路原理图3.2.3存储电路AT24C02是一个2K位串行CMOS E2PROM,内部含有256个8位字节,CATALYST公司的先进CMOS技术实质上减少了器件的功耗。

AT24C02有一个16字节页写缓冲器。

该器件通过IC总线接口进行操作,有一个专门的写保护功能。

相关主题