光学显微镜原理课件学习资料
1.显微镜的发展
1.1 人眼:人眼观察物体的能力是有限的。 一般的情况下,在25cm的明视距离内,人 眼只能分辨相距0.1-0.2mm的两个物体。 也就是说,当两个物体相距不到0.1mm的 时候,人眼就会把它们看成是一个物体了。 这个极限便称为人眼的分辨本领。
1.2 放大镜:约在四百年前眼镜片工匠们开始磨制 放大镜。当时的放大镜的放大倍数只有3—5x
D:分辨率 λ:光波的波长 N:介质折射率 α:孔 径角
3.3孔径角:由标本上一点发出的进入物镜最边缘光线 L和进入物镜中心光线OA之间的夹角称为孔径角。
3.4数值孔径:令N·A = nsin , 叫物镜的数值孔 径。
数值孔径与显微镜的分辨率有密切关系,越短, NA越大,分辨率越高。
物镜数值孔径
3.5放大率
罗伯特·虎克制造的显微镜(1665)放大倍数:140倍
列文虎克和他的显微镜(约1680)
2 显微镜的光学原理
2.1折射和折射率 光线在均匀的各向同性介质中,两点之间以直
线传播,当通过不同密度介质的透明物体时,则发 生折射现象,这是由于光在不同介质的传播速度不 同造成的。
2.2凸透镜的五种成象规律 (1) 当物体位于透镜物方二倍焦距以外时,则在象 方二倍焦距以内、焦点以外形成缩小的倒立实象;
(2) 当物体位于透镜物方二倍焦距上时,则在象方 二倍焦距上形成同样大小的倒立实象;
(3) 当物体位于透镜物方二倍焦距以内,焦点以外 时,则在象方二倍焦距以外形成放大的倒立实象;
(4) 当物体位于透镜物方焦点上时,则象方不能成 象;
(5) 当物体位于透镜物方焦点以内时,则象方也无 象的形成,而在透镜物方的同侧比物体远的位置形 成放大的直立虚象。
焦点深度
3.7视场数
目镜中观察到的物像的一定范围叫视野。
显微镜的总放大率小的时候所能看到的标 本的范围大,而总放大率愈大所能看到的标本 的局部愈小。所以说视野与显微镜的总放大率 成反比。
在同一总放大率的条件下视野也可有大小 差别。这种差别决定于目镜的某些性能。首先 目镜的视场光栏的直径是最主要的条件。视场 光栏的直径叫目镜的视场数值.
3 显微镜的几个基本概念
3.1 光源:能发射光波的物体。 可见光频率范围:7.5×1014 - 3.9×1014 Hz。 真空中对应的波长范围:390nm – 760nm 相应光色:紫、蓝、青、绿、黄、橙、红
3.2分辨率(鉴别距离):显微镜能分辨的最小距离,用 D表示。显微镜的鉴别距离越小,分辨率越高。 D=0.61λ/ nsin
(Mechanical stage and
specimen retainer) 4. 推进器(Mechanical stage
adjustment knob) 5. 物镜(Objectives) 6. 粗细螺旋(Course and fine
focus knob) 7. 目镜(Oculars) 8. 照相机等接口
1.3 显微镜:
1590年,荷兰和意大利的眼镜制造者造出类似显 微镜的放大仪器。
1673~1677年期间,列文胡克制成单组元放大镜 式的高倍显微镜
19世纪70年代,德国人阿贝奠定了显微镜成像的 古典理论基础。
1850年出现了偏光显微术;
1893年出现了干涉显微术;
1935年荷兰物理学家泽尔尼克创造了相衬显微术,
在显微镜下所看到的物像和实际物体 之间的大小比例叫显微镜的放大率或放 大倍数。显微镜下物像的放大主要由物 镜、镜筒长度、目镜所决定。适合的放 大倍数决定于物镜的数值孔径,一船应 为数值孔径的500――1000倍。
3.6焦点深度
在显微镜的光轴上有一段距离范围内物 体被看得清晰。超出这段距离的物体就模 糊不清。这段距离位于显微镜焦点的上下 很小的范围之内。这段距离的上下限叫焦 点深度。
显微镜
主要内容
• 显微镜的发展 • 显微镜的光学原理 • 显微镜的几个基本概念 • 显微镜的结构 • 显微镜的使用 • 显微镜的维护
要知道的几个重要的分辨率
• 人眼:0.2mm/250mm • 光学显微镜:0.2um • 电子显微镜:0.2nm • 显微镜放大倍率的极限即有效放大
倍率,显微镜的分辨率是指能被显 微镜清晰区分的两个物点的最小间 距。分辨率和放大倍率是两个不同 的但又互有联系的概念。
3.8工作距离
工作距离也叫物距,即指物镜前透镜的表面 到被检物体之间的距离。
在物镜数值孔径一定的情况下,工作距离短孔 径角则大。
数值孔径大的高倍物镜,其工作距离小。
4 显微镜的结构
组成
光学放大系统 照明系统
目镜 物镜 光源 折光镜
聚镜
滤光片
机械和支架系统
光学显微镜基本结构: 1. 照明灯(Lamp) 2. 聚光器(Condenser) 3. 载物台和切片夹
(Connection to camera, etc.)
4.1物镜
物镜(objective)是光学显微镜成像系统中 决定其分辨率或叫分辨本领的最关键部件。
(1)消色差物镜(achromat)
色差校正使可见光中红光和蓝光聚焦于一 点,而黄绿光则聚焦于另一点。能够消除光谱 中红光和蓝光所形成的色差。这种物镜与目镜 配用时可达到消色差物镜所要求的光学性能。
2.3显微镜的成像原理
显微镜和放大镜起着同样的作用,就是把 近处的微小物体成一放大的像,以供人眼观察。 只是显微镜比放大镜可以具有更高的放大率而 已。
物体位于物镜前方,离开物镜的距离大于 物镜的焦距,但小于两倍物镜焦距。所以,它 经物镜以后,必然形成一个倒立的放大的实像 A'B'。 A'B'靠近F2的位置上。再经目镜放大为 虚像A''B''后供眼睛观察。目镜的作用与放大 镜一样。所不同的只是眼睛通过目镜所看到的 不是物体本身,而是物体被物镜所成的已经放 大了一次的像。
(2)复消色差物镜(apochromat)
是性能最高的物镜。能消除可视光中黄、红、 蓝即包括几乎所有谱线在成像过程中所造成的 色差。
(3)平象物镜
它们所成的影象基本上是平的,象场弯曲很小, 不会发生视野中心与边缘不能同时准焦的现象,因 此对目视观察及显微摄影都极为方便。平象物镜由 于将弯曲的影象展平,在同样放大倍数下它成的影 象比用一般物镜要大一点。在平象物镜的金属外框 上,刻有Flanachr、 planapo、 plan 等字 样。