金堆城钼矿固体废物对水环境的污染李侠1, 张益谦2( 1. 西安财经学院, 陕西西安710061; 2. 长安大学环境工程学院, 陕西西安710054)[ 摘要] 本文通过对陕西华县金堆城钼矿区西川河流经废石堆的入口处和出口处采取的水样进行了常量组分、微量组分的测定, 分析其污染特征, 确定出金堆城钼矿废石堆对水环境的污染指标。
[ 关键词] 废石; 金属硫化物; 水环境; 污染指标[ 中图分类号] P641. 69[ 文献标识码] A[ 文章编号] 1004- 1184( 2006) 05- 0064- 03[ 收稿日期] 2006- 05- 09[ 作者简介] 李侠( 1971- ) , 女, 陕西三原人, 在读博士, 主攻方向: 地下水的环境影响。
Pol lution of Mo Mine Solid Waste to Water Environment in JinduichengLI Xia, ZHANG Yiqian( 1. Xi'an U niv ersity of Finance and Economics Xi'an Shanxi 710061; 2. College of environmentand engineering, Chang'an University Xi'an, Shanxi 710054)Abstract: T he art icle collected water samples f rom Xi chuan Riv er ent rance and exit passing byw aste ro ck o f Mo mine area in Jinduicheng of Hua county in Shanxi prov ince, tested it s macro- co nstituent and micro- component , analyzed it s pollut ion characterist ics, determined the pollut ion indexof w aste rock of Mo mine in Jinduicheng ag ainst w ater environment .Key words: Waste ro ck, metal sulf ide deposit , water environmental pol lut ion 0 前言目前, 矿山固体废弃物对环境的污染问题已受到各界人士的高度重视。
调查矿山固体废弃物的污染现状, 研究其污染规律, 提出相应的防污措施, 已被列入矿山环境研究的主要议程。
金堆城钼矿蕴藏于安山岩中, 岩石中含有多金属硫化矿物, 除主采的辉钼矿外, 岩石中还含有黄铁矿、黄铜矿、方铅矿、闪锌矿、磁铁矿、褐铁矿、赤铁矿、金红石、锡石、辉铌矿、金、银、铼、硒等。
其中黄铁矿是金属硫化矿物中含量最高者。
随着钼矿业的不断开采,大量金属硫化矿物废石被排放, 这些露天堆积的矿山废弃物, 对土壤及地下水环境造成了严重的污染。
就此, 我们与有关部门合作, 对南牛坡废石场造成西川河流严重污染的问题进行了专项研究。
本文根据试验结果来分析和研究金属硫化矿物废石对水环境的污染问题。
1 矿区废石场堆积的地形地貌条件[ 1]金堆城钼矿区位于东秦岭山系南缘中高山区, 地貌成因类型可分为构造侵蚀地貌、构造剥蚀地貌、人工堆积地貌等。
组成构造地貌的岩性主要为黑云母安山玢岩、花岗岩、石英岩。
由于对当地水环境影响最大的是人工废石堆积, 故下面对南牛坡废石场简作叙述。
南牛坡废石场堆积长度超过2 km, 总平面宽度超过300 m, 最大堆积厚度约100 m。
现已形成三级台阶, 每一台阶高度在30~40 m 之间, 第一台阶的标高在1216~1249 m 之间, 其底部在泄水洞以西到出水点一段, 覆盖在西川河右岸三级、二级阶地、漫滩及部分河道上, 台面高出西川河床20 多m, 掩埋西川河河道的长度约1. 0 km。
掩埋河道段, 河水全部进入废石中, 由明流变成隐伏径流, 见图1。
第二台阶标高1284~1308 m, 高出第一台阶约40 m。
第三台阶目前正在堆积之中, 范围相对较小, 顶部标高达1322 m。
废石堆积物主要由碎石、块石组成, 其棱角突出, 大小混杂, 最大粒径超过1 m, 一般以数cm 到十多cm 居多。
其粒径在垂直剖面上具有642006 年10 月第28 卷第5 期地下水Gr ound w aterOct . , 2006Vol. 28 NO. 5明显的变化规律, 一般上部粒度细小, 下部粗大。
a 剖面图b平面图图1废石场掩埋西川河段示意图2 矿区的岩石成分根据金堆城钼业公司原矿的多元素分析数据[ 2] ,矿石的元素组成见表1。
表1金堆城钼业公司原矿多元素分析(%)元素Mo Cu T F e Pb Zn SiO2 Al2O3 M gO CaO含量0. 097 0. 039 7. 630 0. 013 0. 071 55. 620 11. 050 2. 990 3. 040元素F T iO2 ZrO Be Sn As Co N i Cr含量0. 700 1. 280 0. 020 0. 002 0. 0014 0. 010 0. 015 0. 003 0. 0074 废石的化学组成是评价其环境效应最基本的资料, 其中硫的含量是研究废石环境效应时的一个重要指标, 而黄铁矿是废石中硫的主要赋存形式, 它的氧化会加速其他组分的溶出, 使水环境遭受严重破坏。
3 金堆城露天矿区水的化学特征金堆城露天矿区附近地下水的水质, 根据前人的研究成果在不同类型地下水及不同岩性中有所差别。
在天然堆积物的孔隙含水层中, 地下水以SO4 ·HCO3—Ca 和SO4—Ca 型水为主, pH= 5. 5~8. 5, 硬度大于180 mg/ l , 矿化度小于1. 0 g / l; 在变质岩系中以HCO3·SO4—Ca 和SO4·HCO3—Ca 型为主, 另外还有SO4—Ca·Mg 及SO4·Cl—Ca 型水, pH= 7.5~8. 9, 矿化度小于0. 35 g/ l ; 在岩浆岩裂隙含水岩组的泉水中, 水化学类型为HCO3·SO4—Ca ·Na 或SO4·Cl—Ca 型, pH= 7. 0~9. 2, 矿化度小于1. 0 g/l , 而在开挖的输水洞中, 部分出水点水的pH< 3。
西川河在中下游有1. 0 km 长度为潜于金堆城废矿石下呈隐伏径流, 在此段中除西川河水外, 南牛坡废石场中雨水入渗也汇入其中, 还有来自侧向的补给, 表现为隐伏径流的西川河出水点流量大于入口点。
本次研究过程中, 分别在入口点和出口点取水样进行分析, 在较长时间没有下雨的条件下, 入口处的水样可代表当时西川河上游地下水的水质, 出水点的水样既有西川河入口处水, 也有来自废石堆积物中侧向的地下水。
采取水样时河流入口处水清澈, 量较小, 而出口处的水有些白色的混浊物, 水量较大。
分析方法[ 3] 及结果见表2 和表3。
表2水样测定方法序号项目测试方法1 pH 复合电极2 电导率Ec 电导电极3 HCO3- 、总碱度HCl 滴定法4 Ca2+ 、Mg 2+ 、_______总硬度E DT A 滴定法5 SO42- E DT A 滴定法6 Cl- AgNO3滴定法7 Cu 、Zn 火焰原子吸收法8 Pb 石墨炉原子吸收法9 Fe 火焰原子吸收法、721 分光光度法注: 本文实验中所有测试项目的单位统一, Ec( s/ cm ) , 除pH 外,总碱度和总硬度及其余项目均为mg / l , 其中的总碱度和总硬度均为以CaCO3计。
4 结果分析由表3 可见, 金堆城矿区废石场附近河流流经废石堆的水质变化有如下特点:( 1) pH 值变化大。
从废石堆入口处的7. 75 降低到出口处的5. 58, 降低了2. 17, 水质明显酸化, 超过了Ⅴ类地面水环境质量标准( GBZB1- 1999) 。
其原因主要是由于受露天矿碎石堆积影响所致, 碎石中大量的金属硫化矿物( 主要是黄铁矿, 另外还有黄铜矿、闪锌矿、方铅矿等) 与外界接触, 氧化生成硫酸, 增加了水中H+ 浓度, 使水变为弱酸性水。
表3水样中pH、Ec、常量组分及微量金属离子分析结果项目入口出口项目入口出口pH 7. 75 5. 58 总硬度77. 77 523. 94Ec 173 972 K+ + Na+ 4. 09 49. 64CO32- 0. 00 0. 00 矿化度127. 29 818. 20HC O3- 63. 46 12. 69 侵蚀CO2 4. 58 16. 02总碱度52. 05 10. 41 Fe 0. 0042 0. 7974Cl- 4. 32 5. 76 C u 0. 0020 0. 7422SO42- 27. 50 589. 30 Zn 0. 0274 2. 1235Ca2+ 22. 95 85. 24 Pb 0. 00 0. 0257M g2+ 4. 97 75. 57 - - -( 2) 总碱度降低。
由于水质明显酸化, 使得总碱度由入口的52. 05 mg/ l 降到出口处的10. 41 mg / l, pH = 5. 58 表明总碱度由HCO3- 控制。
CaCO3+ H+ →Ca2+ + HCO3- ( 1)HCO3- + H+ →H2CO3→H2O+ CO2 ( 2)65第28 卷第5 期地下水2006 年10 月HCO3- 通过反应 含量增加, 但反应 又消耗了HCO3- , 这两种作用同时存在, 但是总碱度的降低表明反应 占优势, H2CO3 在水中一部分以CO2 气体逃逸出去。
( 3) 电导率大幅度提高。
水的电导率与其所含无机酸、碱、盐的量有一定关系, 该指标常用于推测水中离子的总浓度或含盐量, 不同类型的水有不同的电导率。
由于废石中硫化物的风化作用释放出大量的硫酸, 而酸性水又溶解了废石中许多碱性矿物, 使水中离子的浓度增加, 含盐量增加, 因而电导率Ec 从入口处的173 s/ cm 增加至出口处的972 s/ cm, 增加了5. 6 倍多。
( 4) SO42- 浓度增大20 多倍。
SO42- 浓度从入口处的27. 50 mg / l 增加到出口处的589. 30 mg / l, 出口水样中的SO42- 超过了地面水环境质量标准( GHZB1- 1999, ≤250 mg / l) 2 倍以上, 这是由于硫化物的氧化作用释放出大量的SO42- 的缘故。