电子课程设计报告
设计课题: 数字频率计
作者:李成赞≦
专业: 08信息工程
班级: (2)班
学号: 3081231201 日期 2009年6月5日——2009年6月17日
指导教师: 廖东进
设计小组其他成员:叶昕瑜史海镔陈福青姚闽梁芳芳
衢州职业技术学院信息与电力工程系
前言
一、频率计的基本原理:
频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。
其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。
频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。
主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。
在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。
二、频率计的应用范围:
在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。
频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。
正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。
在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。
频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。
在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。
在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。
目录1、设计要求
数字频率计
2、第一章系统概述
3、第二章单元电路设计与分析
3.1 数字频率计的基本原理
3.2 数字频率的设计
3.2.1 放大整形电路
3.2.2 时基电路
3.2.3 逻辑控制电路
3.2.4 输出实现器
4、第三章总结设计
附录A 系统电路原理图
附录B 元件清单
附录C 参考文献
设计要求
电子课程设计报告格式:
每人必须写出一份4000字以上设计总结报告,总结报告应包括以下内容:题目名称、前言、目录、鸣谢、元器件明细表、附图、参数文献。
其中,前言应包含设计题目的主要内容、资料收集工作的简介。
正文参考格式如下:
第一章系统概述
简单介绍系统设计思路与总体解决的可行论证,各功能块的划分与组成,全面介绍总体工作或工作原理。
第二章单元电路设计与分析
详细介绍个单元电路的选择、设计及工作原理分析,并介绍有关参数的
计算及元件参数的选择等。
第三章总结
简单介绍对设计题目的结论性意见,进一步完善或改进的意向性说明,
总结设计课程的收获与体会。
元器件明细表主要用于列出本次课程设计中所用到的全部元器件。
附图要求用2#以上图纸画出总原理接线图,参考文献格式如下:
序号作者名书刊名出版社出版时间(刊号)
数字频率计(设计要求):
数字频率计是用来测量正弦信号、矩形信号等波形上工作频率的仪器,
其测量结果直接用十进制数字显示。
本题要求采用中、小规模集成芯片设计
集成有下列功能的数字频率测量计:
被测信号的频率范围为1Hz—100KHz,分成两个频段,即1—999Hz、1—100KHz,用三位数码管显示测量数据,测量误差小于5%。
数字频率计
第一章系统概述
为了使计数器被测信号的频率范围为1—999Hz、,用三位数码管显示测量数据。
第二章单元电路设计与分析
一、数字频率计测频率的基本原理
所谓频率,就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T秒内测得这个周期性信号的重复变化次数为N,则其频率可表示为:
f=N/T
图1——数字频率计的组成框图和波形图
图1是数字频率计的组成框图。
被测信号v x经放大整形电路变成计数器所要求的脉冲信号I,其频率与被测信号的频率f x 相同。
时基电路提供标准时间基准信号II,其高电平持续时间t1=1 秒,当l秒信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到l秒信号结束时闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率f x =NHz。
逻辑控制电路的作用有两个:一是产生锁存脉冲IV,使显示器上的数字稳定;二是产生清“0”脉冲V,使计数器每次测量从零开始计数。
各信号之间的时序关系如图1所示。
二、数字频率计的电路设计
基本电路设计
数字频率计的基本框图如图1所示,各部分作用如下。
①放大整形电路
图2——放大整形电路图
放大整形电路由晶体管3DG100与74LS00等组成,其中3DGl00组成放大器将输入频率。
为f x 的周期信号如正弦波、三角波等进行放大,与非门74LS00构成施密特触发器,它对放 大器的输出信号进行整形,使之成为矩形脉冲。
②时基电路
图3——时基电路
时基电路的作用是产生一个标准时间信号(高电平持续时间为 1s ),由定时器555构成的多谐振荡器产生。
若振荡器的频率 f 0 1/(t 1 t 2 ) 0.8Hz ,则振荡器的输出波形如图1中的波形II 所示,其中t 1=1s ,t 2=0.25s 。
由公式t 1=0.7(R 1+R 2)C 和t 2=0.7R 2C ,可计算出电阻R 1、R 2及电容C 的值如图。
③逻辑控制电路
图4——逻辑控制电路
根据图1所示波形,在计数信号II结束时产生锁存信号IV,锁存信号IV 结束时产生清“0”信号 V。
脉冲信号IV和V可由两个单稳态触发器74LS123产生,它们的脉冲宽度由电路的时间常数决定。
设所存信号IV和清“0”信号V的脉冲宽度t w相同,如果要求t w=0.02s,则得:
t w=0.45R ext C ext=0.02s
若取R ext=10kΩ,则C ext=t w/0.45R ext=4.4μF。
由74LS123的功能(见下表1)可得,当1R
1B 1触发脉冲从1A端输入时,在触
D
发脉冲的负跳变作用下,输出端1Q可获得一负脉冲,其波形关系正好满足图1所示的波形IV和V的要求。
手动复位开关S按下时,计数器清“0”。
表1——74LS123功芯片能表④输出实现器
图5——频率计算器
表2——74LS90的不同接线方法
锁存器的作用是将计数器在1s结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值。
如图所示,1s计数时间结束时,逻辑控制电路发出锁存信号IV,将此时计数器的值送译码显示器,选用两个8位锁存器74L273可以完成上述功能。
当时锁存信号CP的正跳变来到时,锁存器的输出等于输入,从而将计数器的输出值送到锁存器的输出端。
高电平结束后,无论D为何值,输出端的状态仍保持原来的状态不变,所以在计数期间内,计数器的输出不会送到译码显示器。
表3——74LS273功能表
表4——74LS4
第三章结束语
①设计总结
简易的数字频率计基本完成,各Vcc接电源正极,各开关控制电路的各个部分。
整个电路综合使用了与门、非门、555定时器、显示器、74LS48译码器、74LS273锁存器、74LS90计数器等等的逻辑器件和施密特、可重触发器等模拟电子器件。
②设计心得、体会
本次课程设计由李成赞同学总设计,在廖东进老师辅导下顺利完成啦。
通过本次的课程设计,加深了我对数字电子技术模拟电子两门课程的理解,强化了我对相关知识的记忆,提高了我对所学知识的应用。
这极大扩展了我的视野,更加激发了我对这门课程的热爱,在设计的过程中,由于综合应用了各种学习、应用软件,例如:word、auto CAD、Multisim等,不但体改了技能,还能从中获得了成就感。
通过这次设计,我完全知道了团队合作的所带来的快乐,集体的力量的强大性!我定位了我自己,发现自己的优势和不足,并且勉励自己不断进步,并对未来充满信心。
再此感谢给与指导的廖东进老师、李培江老师、黄云龙老师的指导。
对本课程设计的的大力支持。
附录A:系统电路原理
附录B:元件清单
附录C:参考文献。