当前位置:文档之家› 汽车转向技术发展状况分析

汽车转向技术发展状况分析

引言汽车自19世纪末诞生至今100余年的时间,汽车工业从无到有,以惊人的速度发展,在人类近代文明史写下了的重要篇章。

汽车是数量最多、最普及、活动范围最广、运输量最大的现代化交通工具。

可以断言,没有哪种机械产品像汽车那样对社会产生如此广泛而深远的影响。

汽车,已从“没有马的马车”的雏形经过了无数的精心的雕琢而演化成精妙绝伦的高薪科技产品。

近20年来,计算机技术、设计理论、测试技术、新型材料、工艺技术等诸方面的成就,不但改变了汽车的面貌,而且也是汽车产品的结构和性能焕然一新。

汽车产品的现代化,首先是汽车操纵控制的电子化。

在80年代初,电子设备还只占汽车成本的2﹪,而现在,在一些先进的汽车上,这个指标已经超过了15﹪。

汽车上几乎每一个系统都可以采用电子装置改善性能和实现自动化。

近年来人们对汽车的安全性、舒适性和可靠性提出了更高的要求,特别是对主动安全性的有着很高的期望。

转向系统是汽车主动安全性的最关键总成,所以对转向系统的研究显得尤为重要。

而如何设计汽车的转向特性,使得汽车具有良好的操纵性能,始终是我们汽车技术人员、各汽车生产厂家和科研机构的重要研究课题。

特别是在车辆的高速化、驾驶人员的非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的操纵设计是十分重要的。

第一章转向系统概述1.1汽车转向系统汽车在行使过程中,需按驾驶员的意志经常改变其行使方向,即所谓的汽车转向。

就我们常见的轮式汽车而言,实现转向的方法是,驾驶员通过一套专设的机构,使汽车的转向桥(一般是前桥)上的车轮(转向轮)相对于汽车的轴线偏转一定的角度。

在汽车直线行使时,往往由于转向轮也会受到路面侧向干扰力的作用,自动偏转而改变原来的行使方向。

此时,驾驶员也可以利用这套机构使转向轮向相反的方向偏转,从而使汽车恢复原来的行使方向。

这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系。

因此,汽车转向系的功能是保证汽车按驾驶员的意志而进行转向行驶。

汽车转向系统可按转向能源的不同分为机械转向系和动力转向系。

机械转向系由驾驶员的体力作为转向能源,其中所有的传力件都是机械的。

机械转向系统由转向操纵机构、转向器和转向传动机构三大部分组成。

动力转向系是兼用驾驶员的体力和发动机动力为转向能源的转向系。

在正常情况下,汽车转向所需的能量,只有一小部分由驾驶员提供,而大部分是由发动机通过转向加力装置提供的。

但在转向加力装置失效时,一般还应当能由驾驶员独立承担汽车的转向任务。

因此,动力转向系统是在机械转向系统得基础上加设一套转向加力装置而形成的。

汽车转向系统是决定主动安全性的关键总成,如何设计汽车的转向系统的转向特性,使得汽车具有良好的操纵性能,始终是我们汽车技术人员、汽车生产厂家和科研机构的重要研究课题。

特别是近年来车辆的高速化、驾驶员的非职业化、车流的密集化的趋势,针对更多不同水平的驾驶人群,汽车的操纵系统的设计显得尤为重要。

1.2 汽车转向系统的发展转向系统是在车辆系统是必要的基本制度,通过方向盘司机操纵和控制汽车的方向旅行,以实现他的驾驶意图。

在超过100年,汽车与机械和电子技术的发展和进步的产业。

今天,汽车是不是单纯的机械感的汽车,它是机械,电子,材料等综合产品。

转向系统随着汽车产业的发展后,长期的演变。

正如20世纪50年代,液压动力转向系统在汽车应用,标志着转向系统的开始。

传统的汽车转向系统是机械系统,汽车转向系统的运转是由驾驶员操纵转向盘,通过转向器和一系列的杆件传递到转向轮实现转向的,从20世纪40年代起,为了减轻驾驶员的体力负担,在机械转向系统的基础之上增加了液压助力转向系统(HPS),由于其工作的可靠、技术的成熟至今仍被广泛应用。

近年来,由于电子技术的发展,传统转向系统中越来越多地采用电子元件。

电液助力转向系统(EHPS)是在液压助力转向系统基础上发展起来的,其特点是液压助力泵式由电机驱动的,取代了传统的液压泵由发动机驱动的方式。

由于驱动部分与发动机分离,减少了油耗,起到了节能的作用;驱动电机是由控制单元控制,因而助力特性可根据转向速率、车速等参数设计为可变助力特性。

电动助力转向系统(Electric power steering——EPS)是机械系统的基础上加入电动机作为动力源,电动助力代替了液压助力系统,与液压助力系统相比,除了节省能源外,由于取消了液压系统而节省了安装空间、提高了环保性能,以上以机械转向系统为基础发展起来的各种转向系统改变了转向系统的力传递特性,有效地降低了驾驶员的体力负担,提高了汽车的稳定性。

汽车技术和电子技术的不断革新与进步使得汽车转向系统经历了机械式转向,液压助力转向,电控液压助力转向到如今的电动助力转向的发展历程。

与目前汽车上较多采用转向系统相比,电动助力转向系统具有诸多优点。

因此,电动助力转向已经成为汽车转向系统的发展趋势。

第二章汽车转向系统的各种类型及相关原理2.1机械转向系统机械转向系统是指以驾驶员的体力作为转向能源,其中所有传力件都是机械的,汽车的转向运动是由驾驶员操纵方向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。

机械转向系由转向操纵机构、转向器和转向传动机械3大部分组成。

机械式的转向系统,由于采用纯粹的机械解决方案,为了产生足够大的转向扭矩需要使用大直径的转向盘,这样一来,占用驾驶室的空间很大,整个机构显得比较笨拙,驾驶员负担较重,特别是重型汽车由于转向阻力较大,单纯靠驾驶员的转向力很难实现转向,这就大大限制了其使用范围。

但因结构简单、工作可靠、造价低廉,目前在一部分转向操纵力不大、对操控性能要求不高的微型轿车、农用车上仍有使用。

2.1.1 机械转向机构的分类通常根据机械式转向器形式可以分为:齿轮齿条式、循环球式、蜗杆滚轮式、蜗杆指销式。

应用最广的两种是齿轮齿条式和循环球式(用于需要较大的转向力时)。

在循环球式转向器中,输入转向圈与输出的转向摇臂摆角是成正比的;在齿轮齿条式转向器中,输入转向圈数与输出的齿条位移是成正比的。

循环球式转向器由于是滚动摩擦形式,因而正传动效率很高,操作方便且使用寿命长,而且承载能力强,故广泛应用于载货汽车上。

齿轮齿条式转向器与循环球式相比,最大特点是刚性大,结构紧凑重量轻,且成本低。

由于这种方式容易由车轮将反作用力传至转向盘,所以具有对路面状态反应灵敏的优点,但同时也容易产生打手和摆振等现象,且其承载效率相对较弱,故主要应用于小汽车及轻型货车上,目前大部分低端轿车采用的就是齿轮齿条式机械转向系统2.1.2 机械转向系统的工作原理汽车转向时,驾驶员作用于转向盘上的力,经过转向轴(转向柱)传到转向器,转向器将转向力放大后,又通过转向传动机构的传递,推动转向轮偏转,致使汽车行驶方向改变。

转向操纵机构是驾驶员操纵转向器工作的机构,包括从转向盘到转向器输入端的零部件。

转向器就是把转向盘传来的转矩按一定传动比放大并输出的增力装置。

汽车的转向,完全由驾驶员所付的操纵力来实现的,操纵较费力,劳动强度较大,但其具有结构简单、工作可靠、路感性好、维护方便等优点,多应用于中小型货车或轿车上。

2.1.3 机械转向系统的优缺点虽然传统转向系统工作最可靠,但是也存在很多固有的缺点,传统转向系统由于方向盘和转向车轮之间的机械连接而产生一些自身无法避免的缺陷:①汽车的转向特性受驾驶员驾驶技术的影响严重;②转向传动比固定,使汽车转向响应特性随车速、侧向加速度等变化而变化,驾驶员必须提前针对汽车转向特性幅值和相位的变化进行一定的操作补偿,从而控制汽车按其意愿行驶。

这就变相地增加了驾驶员的操纵负担,使汽车转向行驶存在很大的不安全隐患;③液压助力转向系统经济性差,一般轿车每行驶一百公里要多消耗0.3~0.4升的燃料;另外,存在液压油泄漏问题,对环境造成污染,在环保性能被日益强调的今天,无疑是一个明显的劣势。

2.2液压助力转向系统1953年通用汽车公司首次使用了液压助力转向系统,此后该技术迅速发展,使得动力转向系统在体积、功率消耗和价格等方面都取得了很大的进步。

80年代后期,又出现了变减速比的液压动力转向系统。

在接下来的数年内,动力转向系统的技术革新差不多都是基于液压转向系统,比较有代表性的是变流量泵液压动力转向系统(Variable Displacement Power Steering Pump)和电动液压助力转向(Electric Hydraulic Power Steering,简称EHPS)系统。

变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下,泵的流量会相应地减少,从而有利于减少不必要的功耗。

电动液压转向系统采用电动机驱动转向泵,由于电机的转速可调,可以即时关闭,所以也能够起到降低功耗的功效。

液压助力转向系统使驾驶室变得宽敞,布置更方便,降低了转向操纵力,也使转向系统更为灵敏。

由于该类转向系统技术成熟、能提供大的转向操纵助力,目前在部分乘用车、大部分商用车特别是重型车辆上广泛应用。

但是液压助力转向系统在系统布置、安装、密封性、操纵灵敏度、能量消耗、磨损与噪声等方面存在不足。

2.2.1电动液压助力转向系统EHPS的组成及工作原理图2 液压动力转向系统示意图液压动力转向系统是在机械式转向系统的基础上加装一套装置而成的。

以齿轮齿条式转向器为基础的液压动力转向系统为例,来说明其工作原理。

如上图 2 所示,该系统由转向盘1、转向轴2、齿轮齿条式整体动力转向器3又由转向控制阀4、齿轮齿条式转向器5、转向动力缸6。

转向油罐7 储存液压油,有进、出油管接头,通过油管分别与转向液压泵8和转向控制阀4 连接。

转向液压泵8 安装在发动机上,由曲轴通过皮带驱动,将油从转向油罐处吸入并向转向控制阀4 供给液压油。

转向控制阀4 通过改变液压油路来改变动力传递路线。

转向动力缸6内由活塞分隔成左右两个工作腔,工作腔通过油道分别与转向控制阀4连接。

上图为一种液压式动力转向系统的组成和液压转向加力装置的管路布置示意图。

其中属于转向加力装置的部件是:转向液压泵7、转向油管8、转向油罐6 以及位于整体式转向器4 内部的转向控制阀及转向动力缸5 等。

当驾驶员转动转向盘1 时,通过机械转向器使转向横拉杆9 移动,并带动转向节臂,使转向轮偏转,从而改变汽车的行驶方向。

与此同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操作。

由于有转向加力装置的作用,驾驶员只需比采用机械转向系统时小得多的转向力矩,就能使转向轮偏转。

2.2.2电动液压助力转向系统的优缺点优点:助力转向系统优点主要体现在以下几个方面:电动助力转向系统能在不同车速下提供不同的助力特性。

在低速行驶时,增加转向助力,使得转向更加轻便;在高速行驶时减少转向助力,甚至为了提高路感增加转向阻尼。

相关主题