当前位置:文档之家› 人教版高中数学必修二平面与平面垂直的性质公开课优质教案

人教版高中数学必修二平面与平面垂直的性质公开课优质教案

2.3.4 平面与平面垂直的性质一、教材分析空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题因此,面面垂直的性质定理是立体几何中最重要的定理.二、教学目标1.知识与技能(1)使学生掌握平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;( 3 )了解平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明” ,培养学生空间概念、空间想象能力以及逻辑推理能力三、教学重点与难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.四、课时安排1 课时五、教学设计(一)复习1)面面垂直的定义如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直( 2 )面面垂直的判定定理 .两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的判定定理符号表述为: 两个平面垂直的判定定理图形表述为:二)导入新课思路 1.(情境导入 )黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?思路 2.(事例导入 )如图 2,长方体 ABCD —A ′B ′C ′中D ,′平面 A ′ ADD ′与平面 ABCD 垂直 ,直线 A ′A 垂直于其交线 AD. 平面 A ′ ADD ′内的直线 A ′A 与平面 ABCD 垂直吗?二)推进新课、新知探究、提出问题① 如图 3,若 α⊥β, α∩β =CD,AB α,AB ⊥CD,AB ∩CD=B.请同学们讨论直线 AB 与平面 β的位置关系 .AB AB α⊥β.图1图2②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β点,P∈α,P∈a,a⊥β请,同学们讨论直线a与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.⑤总结应用面面垂直的性质定理的口诀.活动:问题①引导学生作图或借助模型探究得出直线AB 与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线 a 与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点. 问题⑤引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:①通过学生作图或借助模型探究得出直线AB 与平面β垂直,如图 3. ②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图 4.两个平面垂直的性质定理用符号语言描述为:ABCD AB ⊥β. AB CD AB CD B两个平面垂直的性质定理证明过程如下:如图5,已知α⊥β, α∩β =a,ABα,AB ⊥ a于 B.求证:AB ⊥ β.证明:在平面β内作BE⊥CD 垂足为B,则∠ ABE 就是二面角αCDβ的平面角.由α⊥β可,知AB⊥BE.又AB⊥CD,BE 与CD 是β内两条相交直线,∴AB⊥β. ③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知α⊥β,P∈α,P∈a,a⊥ β求.证: a α.证明:设α∩β,=c过点P 在平面α内作直线b⊥c,∵α⊥β∴,b⊥β而. a⊥β,P∈a,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线 b 重合.那么 a α.利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理⑤应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线(四)应用示例思路1例 1 如图7,已知α⊥β,a⊥β,a α试,判断直线 a 与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴ a∥ b.∵a α,∴a∥α.变式训练如图8,已知平面α交平面β于直线 a. α、β同垂直于平面γ,又同平行于直线 b.求证:(1)a⊥ γ;(2)b⊥ γ.证明:如图9,(1) 设α∩γ=,ABβ∩γ=A在C.γ内任取一点P 并在γ内作直线PM⊥AB ,PN⊥AC.∵γ⊥α,∴PM ⊥α而. a α,∴PM ⊥a.同理,PN⊥a.又PM γ,PN γ,∴a⊥γ.(2)在a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理,b∥ a2.∵a1、a2同过Q且平行于b,∴ a1、a2重合.又a1 α,a2 β,∴a1、a2都是α、β的交线,即都重合于 a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例 2 如图10,四棱锥P—ABCD 的底面是AB=2 ,BC= 2 的矩形,侧面PAB 是等边三角形,且侧面PAB ⊥ 底面ABCD.(1)证明侧面PAB⊥侧面PBC;(2)求侧棱PC 与底面ABCD 所成的角;(3)求直线AB 与平面PCD 的距离.(1)证明:在矩形ABCD 中,BC⊥AB,又∵面PAB⊥底面ABCD, 侧面PAB∩ 底面ABCD=AB, ∴ BC ⊥侧面PAB. 又∵ BC 侧面PBC,∴侧面PAB⊥侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又∵△PAB是等边三角形,∴PE⊥AB. 又∵侧面PAB⊥底面ABCD ,∴ PE⊥面ABCD.∴∠ PCE为侧棱PC与底面ABCD 所成角.PE= 3 BA= 3 ,CE= BE 2 BC 2 = 3, 2在 Rt △ PEC 中,∠ PCE=45°为所求 .( 3)解:在矩形 ABCD 中, AB ∥ CD,∵CD 侧面 PCD ,AB 侧面 PCD ,∴ AB ∥侧面 PCD.取 CD 中点 F ,连接 EF 、PF ,则 EF ⊥ AB.又∵PE ⊥AB,∴AB ⊥平面 PEF.又∵ AB ∥CD,∴CD ⊥平面 PEF.∴平面 PCD ⊥平面 PEF.作 EG ⊥ PF ,垂足为 G ,则 EG ⊥平面 PCD. 在Rt △PEF 中, EG= PE EC 30为所求 .PF5变式训练 如图 12,斜三棱柱 ABC — A 1B 1C 1的棱长都是 a ,侧棱与底面成 60°角,侧面 BCC 1B 1⊥面 ABC. 求平面 AB 1C 1 与底面 ABC 所成二面角的大小活动 :请同学考虑面 BB 1C 1C ⊥面 ABC 及棱长相等两个条件,师生共同完成表述过程,并作出相应辅 助线. 解: ∵面 ABC ∥面 A 1B 1C 1,则面 BB 1C 1C ∩面 ABC=BC,面 BB 1C 1C ∩面 A 1B 1C 1=B 1C 1,∴BC ∥B 1C 1,则 B 1C 1∥面 ABC.设所求两面交线为 AE ,即二面角的棱为 AE,则 B 1C 1∥AE ,即 BC ∥AE.过 C 1 作 C 1D ⊥BC 于 D ,∵面 BB 1C 1C ⊥面ABC,图 122∴C 1D ⊥面 ABC ,C 1D ⊥BC.a 又∠C 1CD=60°,CC 1=a,故 CD= ,即 D 为BC 的中点 . 2又 △ABC 是等边三角形 ,∴BC ⊥AD.那么有 BC ⊥面 DAC 1,即 AE ⊥面 DAC 1.故 AE ⊥AD ,AE ⊥AC 1,∠ C 1AD 就是所求二面角的平面角点评 :利用平面与平面垂直的性质定理 ,找出平面的垂线是解决问题的关键思路 2例 1 如图 13 ,把等腰直角三角形 ABC 沿斜边 AB 旋转至 △ABD 的位置,使 CD=AC,图 13( 1)求证:平面 ABD ⊥平面 ABC ;( 2)求二面角 CBDA 的余弦值 .(1)证明: (证法一 ):由题设 ,知 AD=CD=BD, 作 DO ⊥平面 ABC ,O 为垂足,则 OA=OB=OC. ∴O 是△ABC 的外心,即 AB 的中点 .∴O ∈AB ,即 O ∈平面 ABD.∴OD 平面 ABD. ∴平面 ABD ⊥平面 ABC.(证法二 ):取 AB 中点 O ,连接 OD 、OC,则有 OD ⊥AB , OC ⊥AB ,即∠ COD 是二面角 CABD 的平面角 . 设 AC=a ,则 OC=OD= 2 a , 又 CD=AD=AC, ∴CD=a.∴△ COD 是直角三角形,即∠ COD=9°0∴二面角是直二面角,即平面 ABD ⊥平面 ABC.(2)解:取 BD 的中点 E ,连接 CE 、OE 、OC,∵△ BCD 为正三角形,∴ CE ⊥ BD. ∵C 1D= 3 a ,AD= 3 a ,22C 1D ⊥AD, 故∠ C 1AD=45°.又△BOD 为等腰直角三角形,∴OE⊥BD. ∴∠ OEC为二面角CBDA 的平面角.同(1)可证OC⊥平面ABD, ∴OC⊥OE.∴△ COE 为直角三角形.设BC=a ,则CE= 3 a,OE= 1 a,∴ cos∠OEC= OE 3即为所求.2 2 CE 3变式训练如图14,在矩形ABCD 中,AB=33,BC=3 ,沿对角线BD 把△ BCD 折起,使 C 移到C′,且C′在面ABC内的射影O 恰好落在AB 上.(1)求证:AC′⊥ BC′;(2)求AB 与平面BC′D所成的角的正弦值;(3)求二面角C′BDA的正切值.(1)证明:由题意,知C′O⊥面ABD, ∵C′O ABC′,∴面ABC′⊥面ABD.又∵AD ⊥AB,面ABC′∩面ABD=AB, ∴AD⊥面ABC′.∴ AD ⊥BC′ ∵ BC′⊥ C′D∴, BC′⊥面AC′D.∴ BC′⊥AC′.(2)解: ∵BC′⊥面AC′ D,BC′面BC′ D∴, 面AC′D⊥面BC′D.作AH ⊥C′D于H,则AH ⊥面BC′D连, 接BH,则BH 为AB在面BC′D上的射影,∴∠ABH 为AB 与面BC′D所成的角.又在Rt △AC′D中,C′D=33,AD=3∴, AC′=3 2 .∴AH= 6 .AH 2 2∴sin∠ ABH= ,即AB 与平面BC′D所成角的正弦值为.AB 3 3(3) 解:过O作OG⊥BD 于G,连接C′G,则C′G⊥BD,则∠ C′ GO为二面角C′ BDA的平面角. 在Rt△AC′B中,C′O=AC' BC' 6 ,ABBC' C'D 3 3在Rt△BC′D中,C′G= .BD 2∴OG= C G2C 2 = 3 .∴ tan∠ C′ GO=C ' O2 2 ,2 OG即二面角C′BDA的正切值为2 2 .点评: 直线与平面垂直是立体几何的核心,它是证明垂直问题和求二面角的基础,因此利用平面与平面垂直的性质定理找出平面的垂线,就显得非常重要了例 2 如图15,三棱柱ABC —A 1B1C1中,∠ BAC=90° ,AB=BB 1=1,直线B1C与平面ABC 成30°角,求二面角BB 1CA 的正弦值.图15活动:可以知道,平面ABC 与平面BCC 1B 1 垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线.解:由直三棱柱性质得平面ABC ⊥平面BCC 1B1 ,过 A 作AN ⊥平面BCC 1B 1,垂足为N,则AN⊥平面BCC 1B(1 AN 即为我们要找的垂线) ,在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA ,则∠ NQA 即为二面角的平面角.∵AB 1在平面ABC 内的射影为AB ,CA ⊥ AB ,∴ CA ⊥B 1A.AB=BB 1=1,得AB1= 2 .∵直线 B 1C 与平面 ABC 成 30°角,∴∠ B 1CB=30°, B 1C=2.在 Rt △ B 1AC 中,由勾股定理 ,得 AC= 2 .∴AQ=1.(1)证明: 如图 17,取 CD 的中点 E ,连接 PE 、EM 、 EA,∵△ PCD 为正三角形 ,∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°= 3 .∵平面 PCD ⊥平面 ABCD, ∴PE ⊥平面 ABCD.∵四边形 ABCD 是矩形 ,∴△ADE 、△ECM 、△ABM 均为直角三角形 . 由勾股定理可求得 EM= 3 ,AM= 6 , AE=3,2 2 2∴ EM 2+AM 2=AE 2.∴ AM ⊥EM.在 Rt △ BAC 中, AB=1 , AC= 2 ,得 AN= 6 .3AN 6sin ∠ AQN= =AQ 3 即二面角 BB 1CA 的正弦值为变式训练如图 16,边长为 2 的等边 △ PCD 所在的平面垂直于矩形 ABCD 所在的平面, BC=2 2 , M 为 BC 的中点 .(1)证明: AM ⊥ PM ;(2)求二面角 PAMD 的大小.图 17又 EM 是 PM 在平面 ABCD 上的射影 ,∴∠ AME=9°0 .∴ AM ⊥ PM.(2)解:由(1)可知 EM ⊥AM ,PM ⊥ AM,∴∠ PME 是二面角 PAMD 的平面角 .PE 3∴ tan ∠ PME= =1.∴∠ PME=45°.EM 3∴二面角 PAMD 为 45°.五)知能训练课本本节练习 .六)拓展提升(2007 全国高考 ,理 18)如图 18,在三棱锥 S —ABC 中,侧面 SAB 与侧面 SAC 均为等边三角形 ,∠ BAC=90°,O 为 BC 中点 .(1) 证明 SO ⊥平面 ABC;(2) 求二面角 ASCB 的余弦值 .(1)证 明 :如 图 19,由 题设 ,知 AB=AC=SB=SC=SA. 连 接 OA, △ ABC 为等腰 直 角三 角形 ,所 以22OA=OB=OC= SA,且 AO ⊥BC.又△SBC 为等腰三角形 ,故 SO ⊥ BC,且SO= SA.22 从而 OA 2+SO 2=SA 2.所以 △SOA 为直角三角形 ,SO ⊥ AO.又 AO ∩ BC=O, 所以 SO ⊥平面 ABC.(2)解:如图 19,取 SC 中点 M, 连接 AM 、OM,由(1),知 SO=OC,SA=AC, 得 OM ⊥ SC,AM ⊥SC.所以∠ OMA 为二面角 ASCB 的平面角 .由 AO ⊥BC,AO ⊥ SO,SO ∩BC=O, 得 AO ⊥平面SBC.图 19所以AO ⊥ OM.又AM= 3 SA,故2AO 2 6sin∠ AMO= .AM 3 3所以二面角ASCB 的余弦值为3 .3(七)课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题 2.3 B 组3、4.。

相关主题