高职学生毕业设计题目:多足机器人行走机构设计学院: 机械自动化学院专业:学号:学生姓名:指导教师:日期:摘要本文旨在设计一种能够实现灵活、全方位运动的机器人的行走机构。
本文设计的多足步行机器人具有冗余驱动、运动拓扑的特点。
为实现其步行全方位机动性及作业多功能性,需要解决一系列的技术问题,而结构设计是其中的关键。
首先,对于国内外机器人的发展现状进行阐述和比较,并分析了多足机器人的研究趋势;接着,从机构自由度入手,明确设计思路,确定行走机构结构,对主要零件、构件进行设计,分析机构的受力情况,找出较危险的零件,并对其强度进行校核。
最后,初步研究了机器人的行动方式,拟定了简单的步态规划方案,规划了机器人直线行走步态、定点转弯步态。
关键词:多足机器人;机构自由度;行走机构;机构设计AbstractThis paper aims to design a travelling mechanism of a flexible and omnibearing motorial robot. The multiped walking robot referred to this paper has the characteristics of redandant drive and topological motion. In order to achieve its omnibearing walking mobility and working polyfunctionality, a series of technique questions need to resolved, of which the structural design is the key point.Firstly, the paper states the current situation of the robots development and compares the differences of the robots both domestic and overseas. Moreover ,it analyses the research trend of multiped robots. Secondly, it make clear of the designing ideas and confirm the travelling mechanism in terms of the structural variance,as well as designing the major parts and constuctional elements. Besides ,it analyses the stress state of the mechanism,trying to find out the rather dangerous parts and checking their intensity. Finally, it initially research the walking patterns of the robots and make out a simple tread program, which plans out the robot tread of linear walking and fixed point swerving.Keyword:Multiped robot;Degree of freedom;travelling mechanism;Mechanical design目录第一章绪论 (1)1.1 引言 (1)1.2国内外多足机器人发展概况 (1)1.3 多足机器人研究发展趋势 (3)第二章多足机器人行走机构的设计及校核 (5)2.1 多足机器人行走机构结构的拟定 (5)2.2 重要组件的设计及校核 (6)2.2.1 重要组件的选定 (6)2.2.2 圆柱凸轮的设计 (7)2.2.3 凸轮滚子轴的强度校核 (7)第三章其它部分设计 (9)3.1 电机和减速器的选用 (9)3.2 机器人步态初步规划 (9)设计总结 (11)参考文献 (12)致谢 (13)第一章绪论1.1 引言步行机器人是模仿动物的运动形式,采用腿式结构来完成多种移动功能的一类特种机起人。
参照工业机器人的标准定义,可以把步行机器人理解为“一种由计算机控制的用足机构推进的地面移动装置”以区别于行走式机械玩具及固定行走模式的机械装置。
通常足数多于或等于四的步行机器人称为多足步行机器人,该类机器人能够在不平的路面上稳定地行走,可以取代轮式车完成在一些复杂环境中的运输作业,因此多足步行机器人在军事运输及探测、矿山开采、水下建筑、核工业、星球探测、农业及森林采伐、教育、艺术及娱乐等许多行业有着非常广阔的应用前景。
长期以来,多足步行机器人技术一直是国内外机器人领域研究的热点之一。
为了探索多足步行机器人技术的研究前沿,给我国多足步行机器人工程实用化开发提供关键技术的支持,开展多足步行机器人相关理论和技术的研究具有十分重要的科学意义和应用价值。
1.2 国内外多足机器人发展概况多足步行车最早可以追溯到中国古代的“木牛流马”。
Muybridge在1899年用连续摄影的方法研究动物的行走,则是人们研究多足机器人步态的开端。
二十世纪六十年代,机器人技术的研究进入了以机械和液压控制实现运动的发展阶段。
美国的Shigley( 1960年)和Baldwin(1966年)就使用凸轮连杆机构设计出比轮式车或履带车更为灵活的步行机。
这一阶段比较典型的是美国的Mosher于1968年设计的四足车"Walking Truck"(如图1所示)[1],步行车的四条腿由液压伺服马达系统驱动,安装在驾驶员手臂和脚上的位置传感器完成位置检测功能。
虽然整机操作比较费力,但实现了步行及爬越障碍的功能,被视为是现代步行机发展史上的一个里程碑。
从步态规划及控制的角度来说,这种要人跟随操纵的步行机并没有体现步行机器人的实质性意义,只能算作是人操作的机械移动装置。
图1 四足车"Walking Truck"第二阶段,由于计算机大计算量的复杂数据处理能力的提高,机器人技术进入了全面发展的阶段。
1987年,K. J. Waldron等研制成功了ASV六足步行机器人;1989年,W.Whittake等成功研制了用于外星探测的六足机器人AMBLER;1993年1月,八足步行机器人DANTE用于对南极的埃里伯斯火山的考察,而后,其改进型DANTE-II也在实际中得到使用。
在航空领域,美国NASA研制了爬行机器人“spider-bot”;英国在1993研制了六足步行机器人“MARV”(如图2所示)[2];印度也于2002年研制了六足行走式机器人“舞王”,(如图3所示)[2]。
图2 六足步行机器人“MARV”图3 六足行走式机器人“舞王”第三阶段,多功能性和自主性的要求使得机器人技术进入新的发展阶段。
由于许多危险工作可以由机器人来完成,这就要求机器人不但要具备完成各种任务的功能,还必须有自适应的运动规划和控制性能。
所以,多足步行机器人的研究也进入了融合感知、规划和行动与交互的自主或与人共存的新一代机器人研究阶段。
在国内,中科院沈阳自动化研究所、清华大学、上海交通大学、哈尔滨工业大学、国防科技大学等单位和院校都先后开展了机器人技术的研究,并在多足步行机器人技术的发展上也取得了较大的成果。
但与工业机器人相比,三十多年来步行机器人的研究进展缓慢,除很少几台投入实际试用外,大多数研究开发工作基本上没有走出实验室。
制约多足步行机器人技术进一步发展的基础理论问题并没有得到根本的解决。
1.3 多足机器人研究发展趋势随着对多足步行机器人的研究的日益深入和发展,多足步行机器人在速度、稳定性、机动性和对地面的适应能力等方面的性能都将不断提高,自主化和智能化也将逐步的实现,从而使其能够在更多特殊环境和场合中使用,因而具有广阔的应用前景。
[1]纵览当前多足步行机器人的发展,多足步行机器人有以下几个值得关注的趋势:(1)多足步行机器人群体协作多个多足步行机器人协调合作共同完成某项任务。
与单个多足步行机器人相比,多个多足步行机器人的总负荷更大,可以携带的仪器和工具更多,功能性更强。
它们之间通过通信进行协调,也可以按照某种规则指定主机器人和从机器人,从而按照一定的队形和顺序对目标进行不同的测量和操作。
而当其中某一多足步行机器人出现故障时,其它机器人还可以照常工作,大大提高了工作效率和可靠性。
(2)多足步行机器人的智能化传统步态规划的方法是在机器人逆运动学的基础上,并且己知步行环境,来计算机器人各驱动关节转角的。
这就提出了在机器人对未知环境的识别后,具有普遍实用意义的智能化的自主步态规划生成及控制的研究,以及对机器人实现步行空间精度定位问题的研究。
(3)多足步行机器人的模块化和可重组针对不同的工作环境,机器人需要根据环境的变化对自己的姿态进行调整。
而模块化设计的多足步行机器人则可以根据环境的不同进行自重构。
自重构多足步行机器人比起固定结构的多足步行机器人对地形的适应性更强,可应用的场合更多。
因此,自重构机器人是多足步行机器人的发展方向之一。
第二章 多足机器人行走机构的设计及校核2.1 多足机器人行走机构结构的拟定步行机器人的机械部分是机器人所有控制及运动的载体,其结构特点直接决定了机器人的运动学特征,其性能的好坏也直接决定了功能可行性[4]。
多足步行机器人的机构系统主要包括机器人腿部件的布局、腿部件的结构形式、腿的数量等,而其中腿部件的结构形式是多足步行机器人机构的重要组成部分,是机械设计的关键之一。
因此,从某种意义上说,对多足步行机器人机构的分析主要集中在对其腿机构的分析。
一般地,从机器人结构设计要求看,腿机构不能过于复杂,杆件过多的腿机构形式会引起结构和传动的实现产生困难。
因此对多足步行机器人腿机构的基本要求可以归纳为:(1)实现运动的要求;(2)承载能力的要求;(3)结构实现和方便控制的要求。
为了设计行走机构的结构,我们首先引入空间自由的的概念:一个杆件(刚体),在空间上完全没有约束,那么它可以在3个正交方向上平动,还可以有三个正交方向的转动,那么就有6个自由度。
若在二维空间中有n 个完全不受约束的物体,选其中的一个为固定参照物,因每个物体相对参照物都有6个运动自由度,则n 个物体相对参照物共有6(n-1)个运动自由度,若在所有的物体之间用运动副联接起来,设第1个运动副的约束为u i 如果所有n 个物体之间的运动副数目为g ,这时的运动自由度应减去所有的约束数的总和。