《锂离子动力电池基本知识》
正极 活性物质(LiCoO2\LiMnO2\LiNixCo1-xO2\LiFeO4) 导电剂、溶剂、粘合剂、基体 负极 活性物质(石墨、MCMB) 粘合剂、溶剂、基体 隔膜(PP+PE) 电解液(LiPF6 + DMC EC EMC) 外壳五金件(铝壳、盖板、极耳、绝缘片)
30
圆柱形锂离子电池结构图
28
锂离子电池电化学反应机理
正极反应:LiCoO2==== Li1-xCoO2 + xLi+ + xe负极反应: C + xLi+ + xe- === CLix 电池总反应: LiCoO2 + C ==== Li1-xCoO2 + CLix 放电时发生上述反应的 逆反应。
29
锂离子电池结构
23
电池充电方式介绍
快速充电:充电电流大于0.2C,小于0.8C则是快速充电。 慢速充电:充电电流在0.1C-0.2C之间时,我们称为慢速充电。 涓流充电:充电电流小于0.1C时,我们称为涓流充电。 超高速充电:充电电流大于0.8C时,我们称之为超高速充电。 恒流充电方式:恒流充电法是保持充电电流强度不变的充电。 方法,恒流充电器通常使用慢速充电电流。 快速自动充电方式:通常所使用的是余弦法充电,也就是说 并非用恒定的大电流充电,而是像余弦波那样电流强度随之 变化,这样能缓解热量的积聚,从而将温度控制在一定范围 内。 脉冲式充电法:脉冲充电方式首先是用脉冲电流对电池充电, 然后让电池停充一段时间,如此循环。
5
内阻
电流通过电池内部时受到阻力,使电池的电压降低, 此阻力称为电池的内阻。 电池的内阻不是常数,在放电过程中随时间不断变化, 因为活性物质的组成、电解液浓度和温度都在不断地 改变。 电池内阻包括欧姆内阻和极化内阻,极化内阻又包括 电化学极化与浓差极化。内阻的存在,使电池放电时 的端电压低于电池电动势和开路电压,充电时端电压 高于电动势和开路电压。 欧姆电阻遵守欧姆定律;极化电阻随电流密度增加而 增大,但不是线性关系,常随电流密度的对数增大而 线性增大。
17
放电平台
锂离子电池完全充电后,放电至3.6V时 的容量记为C1,放电至3.0V时的容量记 为C0,C1/C0称为该电池之放电平台 行业标准1C放电平台为70%以上
18
放电倍率
电池放电电流的大小常用"放电倍率"表示,即 电池的放电倍率用放电时间表示或者说以一 定的放电电流放完额定容量所需的小时数来 表示,由此可见,放电倍率表示的放电时间 越短,即放电倍率越高,则放电电流越大。 (放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率 (<0.5C)、中倍率(0.5-3.5C)、高倍率 (3.5-7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流 放电,则放完20Ah的额定容量需用5h,也就 是说以5倍率放电,用符号C/5或0.2C表示,为 低倍率。
循环寿命长:循环寿命高达 2,000 次以上,为铅酸的 5倍、 镍镉的4倍以上。 放电功率大:放电功率分别为铅酸、镍氢电池的 6.6、2.5 倍, 极适用在需要高功率的工具电池,大型动力电池,特别是车 用电池部分。 充电时间短:充电时间不到 2 小时,仅需铅酸电池的1/4、 镍镉的1/2。 转换效率佳:转换效率达95%,优于铅酸的60 %、镍镉的 70%。 轻薄短小:体积重量仅为铅酸的50%,镍镉的70%。 无污染,不含任何对人体有害的重金属元素;
13
过放电(Over discharge)
电池若是在放电过程中,超过电池放电 的终止电压值,还继续放电时就可能会 造成电池内压升高,正、负极活性物质 的可逆性遭到损坏,使电池的容量产生 明显减少。
14
过充电(Over charge)
电池在充电时,在达到充满状态后,若 还继续充电,可能导致电池内压升高、 电池变形、漏夜等情况发生,电池的性 能也会显著降低和损坏。
15
能量密度(Energy density)
电池的平均单位体积或质量所释放出的 电能。 一般在相同体积下,锂离子电池的能量 密度是镍镉电池的2.5倍,是镍氢电池的 1.8倍,因此在电池容量相等的情况下, 锂离子电池就会比镍镉、镍氢电池的体 积更小,重量更轻。
16
自我放电(Self discharge)
33
锂离子电池结构——隔膜
材质:单层PE(聚乙烯)或者 三层复合PP(聚丙烯) +PE+PP 厚度:单层一般为0.016~0.020mm 三层一般为0.020~0.025mm
34
锂离子电池结构——电解液
性质:
无色透明液体,具有较强吸湿性。
应用:
主要用于可充电锂离子电池的电解液,只 能在干燥环境下使用操作(如环境水分小 于20ppm的手套箱内)。
21
化成
电池制造后,通过一定的充放电方式 将其内部正负极物质激活,改善电池 的充放电性能及自放电、储存等综合 性能的过程称为化成,电池只有经过 化成后才能体现真实性能。
22
分容
电池在制造过程中,因工艺原因使得 电池的实际容量不可能完全一致,通 过一定的充放电制度检测,并将电池 按容量分类的过程称为分容
26
锂离子电池保护线路——过放电保 护
过放电保护: 过放电保护 IC 原理:为了防 止锂电池的过放电,假设锂电池接上负载, 当锂电池电压低于其过放电电压检测点 (假定为 2.5V)时将启动过放电保护,使 功率 MOSFET 由开转变为切断而截止放电, 以避免电池过放电现象产生,并将电池保 持在低静态电流的待机模式,此时的电流 仅 0.1uA。 当锂电池接上充电器,且此时 锂电池电压高于过度放电电压时,过度放 电保护功能方可解除。另外,考虑到脉冲 放电的情况,过放电检测电路设有延迟时 间以避免产生误
6
负载能力
当电池的正负极两端连接在用电器上 时,带动用电器工作时的输出功率, 即为电池的负载能力。
7
内压
指电池的内部气压,是密封电池在充 放电过程中产生的气体所致,主要受 电池材料、制造工艺、电池结构等因 素影响。其产生原因主要是由于电池 内部水分及有机溶液分解产生的气体 于电池内聚集所致 。
锂离子动力电池基本知识
主讲: 时间: 地点:
1
大纲
电池分类 电池术语与及使用基本常识 磷酸铁锂动力电池之结构 磷酸铁锂动力电池之应用领域 磷酸铁锂动力电池之工艺流程 磷酸铁锂动力电池之生产设备 锂离子电池之性能指标
2
电池种类划分
一次电池 小型二次电池:镍镉、镍氢、锂离子 铅酸电池 动力电池 燃料电池 太阳能电池-地面光伏发电 其他新型电池
指电池放电时,电压下降到电池不宜再 继续放电的最低工作电压值。 根据不同的电池类型及不同的放电条件, 对电池的容量和寿命的要求也不同,因 此规定的电池放电的终止电压也不相同。
10
开路电压(Open circuit voltage OCV)
电池不放电时,电池两极之间的电位差 被称为开路电压。 电池的开路电压,会依电池正、负极与 电解液的材料而异,如果电池正、负极 的材料完全一样,那么不管电池的体积 有多大,几何结构如何变化,其开路电 压都一样的。
3
电池术语与及使用基本常识
4
容量
电池在一定放电条件下所能给出的电量称为电池的容 量,以符号C表示。常用的单位为安培小时,简称安 时(Ah)或毫安时(mAh)。 电池的容量可以分为理论容量、额定容量、实际容量。 理论容量是把活性物质的质量按法拉第定律计算而得 的最高理论值。为了比较不同系列的电池,常用比容 量的概念,即单位体积或单位质量电池所能给出的理 论电量,单位为Ah/kg(mAh/g)或Ah/L(mAh/cm3)。 实际容量是指电池在一定条件下所能输出的电量。它 等于放电电流与放电时间的乘积,单位为 Ah,其值 小于理论容量。 额定容量也叫保证容量,是按国家或有关部门颁布的 标准,保证电池在一定的放电条件下应该放出的最低 限度的容量。
8
充电率(C-rate)
C是Capacity的第一个字母,用来表示电 池充放电时电流的大小数值。 例如:充电电池的额定容量为1100mAh 时,即表示以1100mAh(1C)放电时间可 持续1小时,如以200mA(0.2C)放电时间 可持续5小时,充电也可按此对照计算。
9
终止电压(Cut-off discharge voltage)
电池不管在有无被使用的状态下,由于 各种原因,都会引起其电量损失的现象。 电池完全充电后,放置一个月。然后用 1C放电至3.0V,其容量记为C2;电池初 始容量记为C0;1-C2/C0即为该电池之月 自放电率 行业标准锂离子电池月自放电率小于 12% 电池自放电与电池的放置性能有关,其 大小和电池内阻结构和材料性能有关
27
什么叫锂离子电池?
锂离子电池是指Li+ 嵌入化合物为正、负极的二次电池。 正极采用锂化合物LiXCoO2、LiXNiO2 、 LiXMnO2 或LiFeO4 负极采用锂-碳层间化合物LiXC6。 电解质为溶解有锂盐LiPF6 、 LiAsF6等有机溶液。 在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌,被形象 的称为“摇椅电池”。 充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富 锂状态。 放电时则相反。
11
工作电压
工作电压指电池接通负载后在放电过程 中显示的电压,又称放电电压。在电池 放电初始的工作电压称为初始电压。 电池在接通负载后,由于欧姆电阻和极 化过电位的存在,电池的工作电压低于 开路电压。