当前位置:文档之家› 光伏发电系统代理合同

光伏发电系统代理合同

分布式发电系统晶硅光伏组件

甲方:

乙方:

二0—六年九月二十七日

甲方:

乙方:

签约地点:

签约日期:

xxx晶硅光伏组件销售代理协议

甲方:XXX有限公司

乙方:XXX有限公司

依照《中华人民共和国合同法》及相关法律法规的规定,遵循平等、自愿、公平和诚实信用的原则,甲乙双方就乙方在本协议约定的经销地域范围内经销甲方户用晶硅光伏组件事宜协商一致,达成并订立如下协议:

1. 经销地域范围

1.1. 乙方在中华人民共和国境内(香港、澳门、台湾地区除外)经销甲方

产品的地域范围为:—浙江 ________ 省(直辖市、自治区)_湖

州____ 市(地区、盟、自治州、地级市)\ 县(县、自

治县、旗、自治旗、县级市、市辖区、林区、特区) \ 乡

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优化设计

太阳能光伏发电系统课程设计家庭并网光伏发电系统的优 化设计 《太阳能光伏发电系统》 课程设计 课题名称: 家庭并网光伏发电系统的优化设计专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 沈阳工程学院 报告正文 目录 第1章绪 论 ..................................................................... . (3) 1.1 设计背 景 ..................................................................... .. (3) 1.2 设计意 义 ..................................................................... ......................................... 3 第2章朝阳市气象资料及地理情况...................................................................... ............... 4 第3章家用并网型...................................................................... .. (6)

太阳能光伏发电系统的优化设 计 ..................................................................... .. (6) 3.1 设计方 案 ..................................................................... .. (6) 3.2负载的计算...................................................................... . (8) 3.3 太阳能电池板容量及串并联的设计及选 型 (9) 3.4 太阳能电池板的方位角与倾斜角的设 计 (10) 3.5 蓄电池容量及串并联的设计及选型..................................................................... 11 3.6 控制器、逆变器的选 型 ..................................................................... (12) 3.7 电气配置及其设 计 ..................................................................... (13) 3.8 系统配置清 单 .....................................................................

光伏发电系统代理合同

分布式发电系统晶硅光伏组件 销 售 代 理 协 议 书 甲方: 乙方: 二〇一六年九月二十七日

甲方: 乙方: 签约地点: 签约日期: XXX晶硅光伏组件销售代理协议 甲方:xxx有限公司 乙方:xxx有限公司 依照《中华人民共和国合同法》及相关法律法规的规定,遵循平等、自愿、公平和诚实信用的原则,甲乙双方就乙方在本协议约定的经销地域范围内经销甲方户用晶硅光伏组件事宜协商一致,达成并订立如下协议: 1.经销地域范围 1.1.乙方在中华人民共和国境内(香港、澳门、台湾地区除外)经销甲 方产品的地域范围为:浙江省(直辖市、自治区)湖州市(地区、盟、自治州、地级市) \ 县(县、自治县、旗、自治旗、县级市、市辖区、林区、特区) \ 乡(乡、民族乡、镇、街道、苏木、民族苏木、(乡级)管理区、县辖区) \ 村。

1.2.乙方为上述地域范围内甲方的独家代理销售商,乙方在经销范围内 与用户建立30KW(含30KW)以下的销售关系,有权自主代理销售本协议约定的产品。甲方有权根据实际需要,在相同地域范围内与其他用户建立30KW(含30KW)以上的销售关系。 1.3.乙方不得违反甲方销售管理制度,在上述地域范围以外以任何名义 和形式进行经销产品的销售行为,乙方如有超出约定范围销售的应提前与甲方进行书面申请,经甲方同意后方可进行销售,否则甲方有权取消乙方代理销售资格。 2.经销产品 甲方授权乙方经销的产品为甲方“XXX”品牌的晶硅光伏组件,具体产品规格及型号,以甲方产品手册或产品宣传册的规定为准。在不改变甲方产品功能、特性和安全的前提下,甲方可根据乙方实际安装需要,可按照乙方提供的规格制作相应外观形状的电池组件产品。 乙方作为甲方在湖州地区的独家经销,双方合作第一年,订单成交量至少800KW。若乙方自签订本协议起6个月内与甲方订单成交数量总额低于400KW,则甲方有权立即终止本协议。 3.协议期限 3.1.本协议有效期为X年,自XXXX年XX月XX日起,至XXXX年XX月 XX日止。 3.2.在本协议期限届满前,乙方要求对本协议进行续期的,应该在本协

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

独立光伏发电系统设计

独立光伏发电系统设计 目录 1引言 (1) 2 独立光伏发电系统工作原理 (1) 3 独立光伏发电系统的设计 (2) 3.1 系统容量的设计 (2) 3.2 太阳能电池组件及方阵的设计 (3) 3.2.1 光伏组件方阵设计需要考虑的问题 (3) 3.2.2 太阳能电池组件(方阵)的方位角与倾斜角 (4) 3.2.3 一般设计方法 (4) 3.3 直流接线箱的选型 (5) 3.4 光伏控制器的选型 (7) 3.6 光伏逆变器的选型 (8) 结论 (9)

独立光伏发电系统设计 摘要 太阳能光伏发电是一种最具可持续发展理想特征的可再生能源发电技术,发展太阳能光伏发电系统也具有很高的可行性,首先能缓解我国目前的能源问题以及日益严重的环境问题,还能解决边远地区居民用电难,成本高的问题。本论文将从小型独立系统的发电原理,系统设计原理,及其本身具有的优势结合其受众群体的所需考虑的各方面因素来设计适合家庭使用的小型系统。通过理论与实际市场调查相结合的方法设计适合全国各地人民使用的优惠且实用的系统。 关键词:小型;独立光伏发电;系统;优惠实用 1引言 当下,许多国家已把发展可再生能源作为未来实现可持续发展的重要方式,而中国也将以太阳能为代表的可再生能源作为未来低碳经济的重要组成部分。近年来,国家财政对太阳能产业的补贴力度逐年增强。独立光伏发电系统是指未与公共电网相连接的太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。 2 独立光伏发电系统工作原理 通过太阳能电池将太阳辐射能转换为电能的发电系统称为太阳能光伏发电系统。其主要结构由太阳能电池组件(或方阵)、蓄电池(组)、光伏控制器、逆变器(在有需要输出交流电的情况下使用)以及一些测试、监控、防护等附属设施构成。 太阳能电池方阵吸收太阳光并将其转化成电能后,在防反充二极管的控制下为蓄电池组充电。直流或交流负载通过开关与控制器连接。控制器负责保护蓄电池,防止出现过充或过放电状态,即在蓄电池达到一定的放电深度时,控制器将自动切断负载,当蓄电池达到过充电状态时,控制器将自动切断充电电路。有的控制器能够显示独立光伏发电系统的充放电状态,并能贮存必要的数据,甚至还具有遥测、遥信和遥控的功能。在交流光伏发电系统中,DC-AC逆变器将蓄电池组提供的直流电变成能满足交流负载需要的交流电。

离网光伏系统设计

离网光伏发电系统容量设计 一.任务目标 1.掌握容量设计的步骤和思路。 2.掌握光伏发电系统的容量设计方法。 3.了解光伏发电系统容量设计考虑的相关因素。 二.任务描述 光伏发电系统容量设计主要涉及蓄电池容量、蓄电池串并联数、光伏发电系统的发电量、光伏组件串并联数的计算。本实验报告主要以两种常见的计算方法为主。计算过程中需要注意不同容量单位之间的换算。 三.任务实施 1.容量设计的步骤及思路: 光伏发电系统容量设计的主要目的是计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。主要步骤: 2.蓄电池容量和蓄电池组的设计: (1)基本计算方法及步骤 ①将负载需要的用电量乘以根据实际情况确定的连续阴雨天数得到初步的蓄电池容量。阴雨天数的选择可参照如下:一般负载,如太阳能路灯等,可根据经验或需要在3-7内选取,重要

的负载。如通信、导航、医院救治等,在7-15内选取。 ②蓄电池容量除以蓄电池的允许最大放电深度。一般情况下,浅循环型蓄电池选用50%的放电深度,深循环型蓄电池选用75%的放电深度。 ③综合①②得电池容量的基本公式为 最大放电深度 连续阴雨天数 负载日平均用电量蓄电池容量?= 式中,电量的单位是h A ?,如果电量的单位是h W ?,先将h W ?折算为h A ?,折算关系如下: 系统工作电压 ) 负载日平均用电量(负载平均用电量h W ?= (2)相关因素的考虑 上 ①放电率对蓄电池容量的影响。 蓄电池的容量随着放电率的改变而改变,这样会对容量设计产生影响。计算光伏发电系统的实际平均放电率。 最大放电深度 连续阴雨天数 负载工作时间)平均放电率(?= h 负载工作功率 负载工作时间负载工作功率负载工作时间∑∑?= ②温度对蓄电池容量的影响。 蓄电池的实际容量会随着温度的变化而变化,当温度下降时,蓄电池的实际容量下降;温度升高时,蓄电池的实际容量略有升高。蓄电池的实际容量与温度的关系如图4-3所示曲线所示。

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

光伏发电系统项目设计合同

福建海西光伏发电系统项目施工图阶段设计合同 委托单位: 设计单位: 工程地点: 合同编号: 签订日期:

福建省泉南投资开发有限公司(以下简称甲方)委托福建省水利水电勘测设计研究院(以下简称乙方)承担福建海西光伏发电系统项目施工图阶段的设计工作,经双方充分协商,同意签定本合同,以资双方共同遵守。本合同遵守《中华人民共和国合同法》。 一、任务依据 甲方委托书,以及国家和地方有关工程设计管理的法律、法规、规章及规范性文件。 二、工作内容 根据国家有关规程规范进行福建海西光伏发电系统项目施工图阶段设计工作,乙方应无条件配合甲方完成方案报建工作;施工图设计应满足初步设计、方案设计批准文件要求,并满足《设计任务书》规定的设计深度要求。 三、提供成果时间和数量 1.乙方于合同正式签订后20天内完成电气主接线图、电气设备布置图、光伏组件基础图、电缆预埋图、控制设备图等设计工作,并向甲方提供施工图一式捌份和所有图纸DOC、DWG、JPG格式的电子版光盘壹份。 2.乙方于设备供应商提供正式图纸后一个月内完成全部施工图设计工作,并向甲方提供施工图一式捌份和所有图纸DOC、DWG、JPG格式的电子版光盘壹份。 3.根据甲方办理各种报建手续的需要,乙方须在设计正式施工图之前,配合甲方的要求提供报批用图纸,时间上需满足甲方办理手续的进度要求,且该费用已包含在本合同总价中。 四、费用及付款方式 1.经双方商定,甲方同意支付乙方本工程设计费万元整。设计费已包含乙方为履行本合同所必需的一切费用、支出和报酬,包括进行设计的支出和报酬,指派工作人员的交通、差旅、食宿费用,以及为本项目提供咨询、配合、协助义务所需的费用等等。 2.经双方商定,甲方同意按以下方式付款: 乙方提供第一批施工图并通过审查后一周内,甲方支付给乙方元整。 全部施工图提供并通过审查后一周内,甲方支付给乙方元整。 余款在工程竣工验收完工后一周内,甲方一次结清合同余款。 在甲方每次付款前,乙方应向甲方提供相应金额的可计入项目开发成本的税务发票,否则甲方有权拒绝支付款项且不需承担逾期付款的违约责任,直至乙方提供前述发票。 3.甲方要求乙方提交成果份数超过本合同规定份数部分,甲方应另行支付工本费。 五、双方职责 (一)甲方职责 1.合同签订后三天内,负责向乙方提供设计工作所需的有关资料(含接入系统资料、地形图、房屋建筑结构图及上级有关部门的批准文件等),并配合乙方到现场勘测了解情况。 2.负责如期支付给乙方设计费。

光伏发电系统设计方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (6) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (7)

3.3光伏阵列设计 (12) 3.4系统效率分析 (15) 四、电气部分 (16) 4.1概述 (16) 4.2系统方案设计选型 (16) 4.3电气主接线 (20) 4.4主要设备选型 (20) 4.5防雷及接地 (30) 4.6电气设备布置 (31) 4.7电缆敷设及电缆防火 (31) 五、工程案例 ........................................................................... 错误!未定义书签。 六、系统配置以及报价.............................................................. 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规》; 2)GB50057《建筑物防雷设计规》; 3)GB31/T316—2004《城市环境照明规》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规》; 6)GBJ16—87《建筑设计防火规》; 7)《中华人民国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

光伏发电系统_毕业设计

1. 引言 日常生活和社会生产都离不开能源。人们通过直接或间接利用某些自然资源得到能,因而,把具有某种形式能量资源以及由它加工或转换得到的产品统称为能源。前者叫自然能源或一次能源,如矿物燃料、植物燃料、太阳能、水能、风能、海洋能、地热能和潮汐能等,后者通常又把可再生的自然资源称为新能源,其围包括太阳能、生物质能、风能、地热能和海洋能等。矿物燃料(煤、石油、天然气等)又称为常规能源。 值得注意,几乎所有的自然资源,从广义的角度看都来自太阳能。由大气、陆地、海洋、生物等所接受的太阳能都是各种自然资源的源泉。矿物燃料是古生物长期沉积在地下形成的,它的形成源自远古的太阳能。[9]水的蒸发和凝结,风、雨、冰、雪等自然现象的动力也是靠太阳,因而水能、风能归根到底都来自太阳能。生物质能是通过光合、光化作用转化太阳辐射能取得的。由于太阳和月球对地球水的吸水作用产生潮汐能。 世界上最丰富的永久能源是太阳能。地球截取的太阳能辐射能通量为1.7ⅹ1014kW,比核能、地热和引力能储量总和还要大5000多倍。其中约30%被反射回宇宙空间;47%转变为热,以长波辐射形式再次返回空间;约23%是水蒸发、凝结的动力,风和波浪的动能,植物通过光合作用吸收的能量不到0.5%。地球每年接受的太阳能总量为1ⅹ1018kW·h。这相当于5ⅹ1014桶原油,是探明原油储量的近千倍,是世界年耗总能量的一万余倍。 太阳的能量是如此巨大,正如通常所说的“取之不尽、用之不竭”,但是太阳辐射能的通量密度较低,大气层外为1353W/m2.太通过大气层时会进一步衰减,还会受到天气、昼夜以及空气污染等因素的影响,因而,太阳能对地球又呈现间歇性质,时高时低,时有时无。太阳能须加有储热装置,这些都使太阳能利用系统的初期投资变得昂贵。综上所述,太阳能利用具有以下明显的特点:(1)总能量很大,但太阳能通量密度较低; (2)是可再生的能源,但又具有间歇性; (3)无污染的清洁能源; (4)太阳能本身是免费的,有效利用它的初期投资较高; (5)太阳能热利用较容易实现热能能级的合理匹配,从而做到热尽使用。

离网光伏发电系统

毕业论文 学生姓名学号 学院物理与电子电气工程学院 专业电气工程及其自动化 题目离网型光伏供电系统研究 指导老师 (姓名)(专业技术职称/学位) (姓名)(专业技术职称/学位) 2012年 5 月

摘要:本文介绍了太阳能光伏发电的系统的基本组成和特性,说明了太阳能电池最大功率跟踪的原理以及一些常用的方法,并比较了他们的优缺点。本文研究一种带有双向变换器功能的离网光伏发电系统,通过对目前太阳能离网光伏发电系统常用DC/DC拓扑结构的研究,总结了各种DC/DC拓扑结构的优缺点。添加了逆变电路使系统能够向交流负载供电,并对逆变电路通过MALTAB进行了仿真。 关键词:离网光伏发电,逆变电路,DC/DC变换器,最大跟踪率

Abstract: This article describes the basic components and characteristics of the solar photovoltaic system, illustrates the principle of the solar cell maximum power point tracking as well as some commonly used method, and compare their advantages and disadvantages. This article focuses on research with a bi-directional converter function off-grid photovoltaic systems, solar stand-alone PV power generation systems commonly used in the DC / DC topology, summarizes the advantages and disadvantages of a variety of DC / DC topology. Added to the inverter circuit makes the system load to the AC power supply, and inverter circuit by MALTAB the the simulation. Keywords:off-grid photovoltaic inverter circuit, the DC / DC converter, the maximum tracking rate

光伏发电系统代理合同

. 分布式发电系统晶硅光伏组件 销 售 代 理 协 议 书 甲方: 乙方:

二〇一六年九月二十七日 . . 甲方:乙方:签约地点:签约日期: 晶硅光伏组件销售代理协议XXX xxx有限公司甲方: xxx有限公司乙方: 遵循平等、及相关法律法规的规定,《中华人民共和国合同法》依照自愿、公平和诚实信用的原则,甲乙双方就乙方在本协议约定的经销地域范围内经销甲方户用晶硅光伏组件事宜协商一致,达成并订立如下协议: 1.经销地域范围 1.1.乙方在中华人民共和国境内(香港、澳门、台湾地区除外)经销甲方产品的地域范围为:浙江省(直辖市、自治区) 湖州市(地区、盟、自治州、地级市) \ 县(县、自治县、旗、自治旗、县级市、市辖区、林区、特区) \ 乡 (乡、民族乡、镇、街道、苏木、民族苏木、(乡级)管理区、县. .

辖区) \ 村。 1.2.乙方为上述地域范围内甲方的独家代理销售商,乙方在经销范 围内与用户建立30KW(含30KW)以下的销售关系,有权自主代理销售本协议约定的产品。甲方有权根据实际需要,在相同地域范围内与其他用户建立30KW(含30KW)以上的销售关系。 1.3.乙方不得违反甲方销售管理制度,在上述地域范围以外以任何名义和形式进行经销产品的销售行为,乙方如有超出约定范围销售的应提前与甲方进行书面申请,经甲方同意后方可进行销售,否则甲方有权取消乙方代理销售资格。 2.经销产品 甲方授权乙方经销的产品为甲方“XXX”品牌的晶硅光伏组件,具体产品规格及型号,以甲方产品手册或产品宣传册的规定为准。在不改变甲方产品功能、特性和安全的前提下,甲方可根据乙方实际安装需要,可按照乙方提供的规格制作相应外观形状的电池组件产品。 乙方作为甲方在湖州地区的独家经销,双方合作第一年,订单成交量至少800KW。若乙方自签订本协议起6个月内与甲方订单成交数量总额低于400KW,则甲方有权立即终止本协议。 3.协议期限 3.1.本协议有效期为 X 年,自 XXXX 年 XX 月 XX日起,至 XXXX 年

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

离网光伏发电系统分类及工作特点

离网光伏发电系统分类及工作特点 离网光伏发电系统又可分为直流光伏发电系统和交流光伏发电系统以及交、直流混合光伏发电系统。而在直流光伏发电系统中又可分为有蓄电池的系统和没有蓄电池的系统。 (1)无蓄电池的直流光伏发电系统 无蓄电池的直流光伏发电系统如图2-2所示。该系统的特点是用电负载是直流负载,对负载使用时间没有要求,负载主要在白天使用。太阳能电池与用电负载直接连接,有阳光时就发电供负载工作,无阳光时就停止工作。系统不需要使用控制器,也没有蓄电池储能装置。该系统的优点是省去了能量通过控制器及在蓄电池的存储和释放过程中造成的损失,提高了太阳能的利用效率。这种系统最典型的应用是太阳能光伏水泵。 图2-2无蓄电池的直流光伏发电系统图图2-3有蓄电池的直流光伏发电系统 (2)有蓄电池的直流光伏发电系统 有蓄电池的直流光伏发电系统如图2-3所示。该系统由太阳能电池、充放电控制器、蓄电池以及直流负载等组成。有阳光时,太阳能电池将光能转换为电能供负载使用,并同时向蓄电池存储电能。夜间或阴雨天时,则由蓄电池向负载供电。这种系统应用广泛,小到太阳能草坪灯、庭院灯,大到远离电网的移动通信基站、微波中转站,边远地区农村供电等。当系统容量和负载功率较大时,就需要配备太阳能电池方阵和蓄电池组了。 (3)交流及交、直流混合光伏发电系统 交流及交、直流混合光伏发电系统如图2-4所示。与直流光伏发电系统相比,交流光伏发电系统多了一个交流逆变器,用以把直流电转换成交流电,为交流负载提供电能。交、直流混合系统则既能为直流负载供电,也能为交流负载供电。 图2-4 交流和交、直流混合光伏发电系统

(4)市电互补型光伏发电系统 所谓市电互补光伏发电系统,就是在独立光伏发电系统中以大阳能光伏发电为主,以普通220V交流电补充电能为辅,如图2-5所示。这样光伏发电系统中太阳能电池和蓄电池的容量都可以设计得小一些,基本上是当天有阳光,当天就用太阳能发的电,遇到阴雨天时就用市电能量进行补充。我国大部分地区基本上全年都有三分之二以上的晴好天气,这样系统全年就有三分之二以上的时间用太阳能发电,剩余时间用市电补充能量。这种形式即减小了太阳能光伏发电系统的一次性投资,又有显著的节能减排效果,是太阳能光伏发电在现阶段推广和普及过程中的一个过渡性的好办法。这种形式的原理与下面将要介绍的无逆流并网型光伏发电系统有相似之处,但还不能等同于并网应用。 图2-5市电互补型光伏发电系统 市电互补型光伏发电系统的应用举例。某市区路灯改造,如果将普通路灯全部换成太阳能路灯,一次性投资很大,无法实现。而如果将普通路灯加以改造,保持原市电供电线路和灯杆不动,更换节能型光源灯具,采用市电互补光伏发电的形式,用小容量的太阳能电池和蓄电池(仅够当天使用,也不考虑连续阴雨天数),就构成了市电互补型太阳能光伏路灯,投资减少一半以上,节能效果显著。

新能源课程设计-离网型光伏发电系统

新能源技术课程设计指导书

1.实验目的与要求 (1)检索资料,了解光伏发电技术的发展状况以及光伏发电原理; (2)掌握光伏电池模型的建立方法,分析、设计仿真模型,并利用MA TLAB 进行仿真实现; (3)掌握光伏电池的测试方法,选择适合的测量器件与量程,验证光伏阵列模拟方法的正确性; (4)分析离网型光伏发电系统的组成,选择合适的电力变换器拓扑结构并进行原理分析、参数计算; (5)查阅相关文献资料,确定系统MPPT 控制策略,建立MPPT 模块仿真模型,并仿真分析; (6)掌握系统联调的方法,调整控制参数。 2.仪器设备 太阳能电池板1 块,万用表2 个,太阳能功率表TENMARS TM-207,滑动变阻器(100 欧姆,200 瓦)1 个,计算机 1 台,系统仿真软件。 3.实验原理 通过集中授课和查阅相关资料了解离网型光伏发电系统的组成和工作原理。具体包括:(1)光伏电池的发电原理和数学模型; (2)DC—DC—AC变换器的拓扑结构、工作原理和参数计算; (3)研究离网型光伏发电系统最大功率跟踪控制的方法; (4)通过将光伏阵列外接一个可变电阻,调节可变电阻,记录不同情况下的电压和电流值,从而得到I/V 特性,将I 和V 相乘后,可得到P,进一步可获得P/V特性,通过光伏 阵列倾角的调节,从而使照射到光伏阵列上的光强产生变化。 4.实验内容与要求 4.1 实验内容 (1)建立光伏阵列数学模型,依托实际光伏电池板参数对光伏电池输出特性进行相关模拟, 研究光强和温度对光伏电池输出特性的影响,并设计实际光伏电池的检测电路进行实验验证;(2)设计离网型光伏发电系统,包括确定DC-DC-AC变换器拓扑结构、计算电力变换电路参数、确定MPPT控制策略; (3)在MA TLAB环境下建立含光伏阵列模块、电力变换电路模块、MPPT控制模块及输出负载的离网型光伏系统模型,系统调试,在光强和温度突变时系统能够快速、准 确、稳定地实现最大功率跟踪控制。 4.2 实验要求 (1)画出系统框图及原理图,实验接线图,软件流程图。 (2)不同实验步骤时接线不同则要按实验步骤分别给出接线图。 (3)给出接线图中所测量参数的测量点,指明所测参数的变化范围。 (4)指明测量每个参数所对应仪表及选用依据。 (5)指明在测量数据之前对实验线路、实验装置所必须的调试整定工作。

分布式并网光伏发电系统的设计

华准6MW分布式光伏发电项目 4MWp龙蓬子站 10kV升压站初步设计说明书

项目负责人:审核:校对:设计:

目录 1总的部分 4 1.1设计依据 4 1.2设计遵循标准及规范 4 1.3 工程建设必要性及规模 5 1.4 项目概述 5 1.5 系统接线 5 2系统部分 6 2.1电力系统 6 2.2系统继电保护及安全自动装置 6 2.3调度自动化 7 2.4系统通信 8 3电气一次部分 8 3.1电气主接线 8 3.2 短路电流及主要设备、导体选择 9 3.3绝缘配合及过电压保护 10 3.4 雷电过电压保护 10 3.5接地 11 3.6 电气设备布置及配电装置 11 3.7 站用电及照明 11 3.8 电缆设置 12 4 电气二次部分 12 4.1 计算机监控 12 4.2系统概述 12 4.3 系统监控范围 13

4.4 系统构成 13 4.5 系统功能 14 4.6 继电保护 14 4.7 二次设备的布置 15 5.直流系统 15

1总的部分 1.1设计依据 1)南京南瑞太阳能科技有限公司与东南大学建筑设计研究院有限公司电力工程设计研究分院签订的工程设计服务合同2)华准6MW分布式光伏发电项目4MWp龙蓬子站接入系统报告1.2设计遵循标准及规范 火力发电厂设计技术规程(DL 5000-2000) 火力发电厂初步设计文件内容深度规定(DL/T5427-2009) 火力发电厂厂用电设计技术规定(DL/T 5153-2002) 火力发电厂和变电所二次接线设计技术规程(DL/T5136-2012) 电力工程直流系统设计技术规程(DL/T 5044-2004) 火力发电厂和变电所照明设计技术规定(DL/T5390-2007) 电力工程电缆设计规范(GB50217-2007) 电缆防火措施设计和施工验收标准(DLGJ154-2000) 高压配电装置设计技术规定(DL/T5352-2006) 导体和电器选择设计技术规定(DL/T5222-2005) 建筑物防雷设计规范(GB50057-2010) 交流电气装置的过电压保护和绝缘配合(DL/T620-1997) 交流电气装置的接地设计规范(GB\T50065-2011) 火力发电厂厂内通信设计技术规定(DL/T5041-2012) 继电保护和安全自动装置技术规程(GB14285-2006) 电测量及电能计量装置设计技术规程(DL/T5137-2001) 火力发电厂与变电所设计防火规范(GB50229-2006) 35KV~110KV变电所设计规范(GB50059-2011) 电能质量电压波动和闪变(GB12326-2008) 电能质量电力系统供电电压允许偏差(GB12325-2008)

5kW并网型可调度式光伏发电系统设计

辽宁工业大学 光伏发电技术课程设计(论文)题目: 5kW并网型可调度式光伏发电系统设计 院(系): 专业班级: 学号: 121806015 学生姓名: 指导教师:(签字) 起止时间: 2015.12.14-2015.12.25

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气教研室Array 注:成绩:平时40% 论文质量60% 以百分制计算

摘要 近些年来,能源问题迫使世界各国对新能源开发和利用。太阳能因其自身的优势成为最有前途的一种新能源。将太阳能转换为电能越来越多的成为人们关注的焦点,只要成功,前途无量。但太阳能光伏发电仍旧存在着一些缺点,如成本高、能量转换率低,需要不断地改良,优化。对于光伏发电而言,并网模式是将其效率最大化最为理想的方式,因此要做好并网光伏发电系统的设计优化,才能满足电网对发电质量的要求,以及本身的安全运行。本文先对光伏发电进行了回顾,而后重点介绍了并网光伏发电系统,并提出了并网光伏发电系统设计的优化建议。 关键词:无线传感器网络;室内定位;RSSI;加权质心;混合定位

目录 第1章绪论 (1) 1.1光伏发电系统概况 (1) 1.2本文研究内容 (2) 第2章光伏发电系统总体设计 (3) 第3章发电系统设备选择及设计 (4) 3.1太阳能电池板的选择 (4) 3.2蓄电池参数计算及选择 (5) 3.3逆变器设计 (6) 3.4汇流箱设计 (9) 3.5并网逆变器控制保护设计 (11) 第4章总结 (13) 参考文献 (14) 附录A 光伏并网系统结构图 (16) 附录B 并网发电系统原理图 (17)

太阳能光伏发电系统设计报告

西安思源学院能源学院 课程设计 题目:西安市发电系统设计 课程:太阳能光伏发电系统设计专业:电力及其自动化 班级:电力0902 姓名:杨欣 指导教师: 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍--------------------------------------------3 2中国北京市光照辐射气象资料-------------------------------------------------------9 3独立光伏系统设计--------------------------------------------------------------------11 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)---------------------------------11 3.2蓄电池容量设计(电压:24V,48V)--------------------------------------------11 3.3太阳能电池板容量设计,倾角设计-----------------------------------------------11 3.4太阳能电池板安装间隔计算及作图。--------------------------------------------14 3.5逆变器选型-----------------------------------------------------------------------------15 3.6控制器选型-----------------------------------------------------------------------------15 3.7系统发电量预估------------------------------------------------------------------------17

相关主题