《动量守恒定律》单元测试题含答案(4)一、动量守恒定律 选择题1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是( )A .a 、b 碰撞前的总动量为3 kg m /s ⋅B .碰撞时a 对b 所施冲量为4 N s ⋅C .碰撞前后a 的动量变化为4 kg m /s ⋅D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L -= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A.若m0=3m,则能够射穿木块B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v24.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则A.从a到b与从b到c的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为m ghD.从b到c,跳楼机受到制动力的大小等于2mg6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)()A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32 mgC .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J9.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽10.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 11.如图所示,一辆质量M =3kg 的小车A 静止在光滑的水平面上,A 上有一质量m =1kg 的光滑小球B ,将一左端固定于A 上的轻质弹簧压缩并锁定,此时弹簧的弹性势能E p =6J ,B 与A 右壁距离为l 。
解除锁定,B 脱离弹簧后与A 右壁的油灰阻挡层(忽略其厚度)碰撞并被粘住,下列说法正确的是( )A .碰到油灰阻挡层前A 与B 的动量相同B .B 脱离弹簧时,A 的速度为1m/sC .B 和油灰阻挡层碰撞并被粘住,该过程B 受到的冲量大小为3N·sD .整个过程B 移动的距离为34l 12.如图所示,竖直放置的半圆形轨道与水平轨道平滑连接,不计一切摩擦。
圆心 O 点 正下方放置为 2m 的小球A ,质量为m 的小球 B 以初速度 v 0 向左运动,与小球 A 发生弹 性碰撞。
碰 后小球A 在半圆形轨道运动时不脱离轨道,则小球B 的初速度 v 0可能为( )A gRB 2gRC 5gRD .35gR 13.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .墙对A 物块的冲量为4mWC .当B 向右运动的速度为零时,弹簧的弹性势能为零D .弹簧第一次伸长后具有的最大弹性势能为W14.如图所示,一个质量为m 、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m 的小球,以v 0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g )( )A .整个过程中,圆弧体的速度先增大后减小B .小球能上升的最大高度为204v gC .圆弧体所获得的最大速度为v 0D .在整个作用的过程中,小球对圆弧体的冲量大于mv 015.如图所示,长为L 的细线,一端固定在O 点,另一端系一个质量为m 的小球,在最低点A 给小球一个水平方向的瞬时冲量I ,使小球绕悬点O 在竖直平面内运动。
为使细线始终不松弛,I 的大小可选择下列四项中的( )A .大于2m gLB .小于2m gLC .大于5m gLD .大于2m gL ,小于5m gL 16.光滑水平面上有一静止木块,质量为m 的子弹水平射入木块后木穿出,子惮与木块运动的速度图象如图所示。
由此可知( )A .木块质量是2mB .子弹进入木块的深度为002v tC .木块所受子弹的冲量为014mv D .子弹射入木块过程中产生的内能为2014mv 17.如图所示,在倾角30θ=︒的光滑绝缘斜面上存在一有界匀强磁场,磁感应强度B =1T ,磁场方向垂直斜面向上,磁场上下边界均与斜面底边平行,磁场边界间距为L =0.5m 。
斜面上有一边长也为L 的正方形金属线框abcd ,其质量为m =0.1kg ,电阻为0.5R =Ω。
第一次让线框cd 边与磁场上边界重合,无初速释放后,ab 边刚进入磁场时,线框以速率v 1作匀速运动。
第二次把线框从cd 边离磁场上边界距离为d 处释放,cd 边刚进磁场时,线框以速率v 2作匀速运动。
两种情形下,线框进入磁场过程中通过线框的电量分别为q 1、q 2,线框通过磁场的时间分别t 1、t 2,线框通过磁场过程中产生的焦耳热分别为Q 1、Q 2.已知重力加速度g=10m/s 2,则:( )A .121v v ==m/s ,0.05d =mB .120.5q q ==C ,0.1d =m C .12:9:10Q Q =D .12:6:5t t =18.如图所示,水平光滑地面上停放着一辆质量为M 的小车,其左侧有半径为R 的四分之一光滑圆弧轨道AB ,轨道最低点B 与水平轨道BC 相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速释放,物块沿轨道滑行至轨道末端C 处恰好没有滑出.设重力加速度为g ,空气阻力可忽略不计.关于物块从A 位置运动至C 位置的过程中,下列说法正确的是( )A .小车和物块构成的系统动量不守恒B .摩擦力对物块和轨道BC 所做的功的代数和为零C 2gRD 222m gR M Mm+ 19.如图所示,质量为m = 245 g 的物块(可视为质点)放在质量为M = 0.5 kg 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ = 0.4,质量为 m 0 = 5 g 的子弹以速度v 0 = 300 m/s 沿水平方向射入物块并留在其中(时间极短),g = 10 m/s 2,则在整个过程中A .物块和木板组成的系统动量守恒B .子弹的末动量大小为0.01kg·m/sC .子弹对物块的冲量大小为0.49N·sD .物块相对木板滑行的时间为1s20.在真空中的光滑水平绝缘面上有一带电小滑块.开始时滑块静止.若在滑块所在空间加一水平匀强电场E 1,持续一段时间后立即换成与E 1相反方向的匀强电场E 2.当电场E 2与电场E 1持续时间相同时,滑块恰好回到初始位置,且具有动能k E .在上述过程中,E 1对滑块的电场力做功为W 1,冲量大小为I 1;E 2对滑块的电场力做功为W 2,冲量大小为I 2.则A .I 1= I 2B .4I 1= I 2C .W 1= 0.25k E W 2=0.75k ED .W 1= 0.20kE W 2=0.80k E二、动量守恒定律 解答题21.如图,倾角θ=370的直轨道AC 与圆弧轨道CDEF 在AC 处平滑连接,整个装置固定在同一竖直平面内.圆弧划口直的半径为R ,DF 是竖直直径,以氨为圆心,E 、O 、B 三点在同一水平线上,A 、F 也在同一水平线上.两个小滑块P 、Q (都可视为质点)的质量都为m .已知滑块Q 与轨道AC 间存在摩擦力且动摩擦因数处处相等,但滑块P 与整个轨道间和滑块Q 与圆弧轨道间的摩擦力都可忽略不计.同时将两个滑块P 、Q 分别静止释放在A 、B 两点,之后P 开始向下滑动,在B 点与Q 相碰,碰后P 、Q 立刻一起向下且在BC 段保持匀速运动.已知P 、Q 每次相碰都会立刻合在一起运动但两者并不粘连,sin370=0.6,cos370=0.8,取重力加速度为g ,求:(1)两滑块进入圆弧轨道运动过程中对圆弧轨道的压力的最大值.(2)滑块Q 在轨道ACI 往复运动经过的最大路程.22.如图,一根水平杆上等距离地穿着n 个半径相同的珠子,珠子可以在杆上无摩擦移动,珠子的质量依次为m ,km ,k 2m ,k 3m ……,k n-1m ,其中k 的取值范围是122k ≤≤.使第一颗珠子在极短时间内获得初速度v 0,之后每当珠子之间发生碰撞时都会粘在一起.a.分析并说明当k 取何值时,碰撞全部结束后系统的总动能最大;k 取何值时,碰撞全部结束后系统的总动能最小;b.求出碰撞结束后系统相应的最小总动能和最大总动能的比值。