蠕变
目前比较公认的是以位错理论对蠕变做出 的解释,但目前仍然停留在定性阶段。 位错理论可以用下图来简单表示:
施加应力 各晶粒内出现位错增殖 晶内加工硬化(低温时) 温度升高 热振动、原子扩散加剧
Balance
位错相消
回复(位错易移动)
3.2、对稳态蠕变的理论解释
当这种加工硬化与回复成平衡状态时就是 稳态蠕变。 所以实际上蠕变的位错理论可以总结为是 加工硬化产生的位错增殖与回复的竞争过 程。
蠕变断裂机理
晶界滑动机制 中等蠕变温度和较高应力水平。 空位聚集机制 较高温度和较低应力水平。
晶界滑动机制(V型裂纹形成)
空位聚集机制(O型裂纹形成)
4、蠕变强度及金属组织
在高温环境长期服役的构件通常会出现 蠕变现象,为此提出相应的性能指标以满足 设计的需求。 材料的蠕变强度目前尚未有一致的定义。 根据使用中的尺寸变化来规定设计条件时, 第一阶段和第二阶段蠕变应变或应变速率是 研究对象;根据到达断裂的耐用寿命来规定 设计条件时,断裂时间是研究对象。 目前常用的蠕变性能指标有:蠕变极限、 持久强度
5、蠕变试验方法
测定蠕变极限、持久强度的基本试验装置 多为一种杠杆式的静加载系统。 加载方法为:在杠杆上设有分载荷,随着试 样的伸长逐渐移动分载荷。 另外还有安德雷德的浮力法以及逐渐改 变杠杆有效长度的方法等。
拉伸蠕变试验机
6、实际中的蠕变断裂
6.1 焊接区的蠕变 随着焊接技术的 发展,在以发电用 锅炉为主的高温用 机器上,大量地采 用了焊接结构,焊 接区的蠕变强度, 实际上是一个极其 重要的问题。
4.1 蠕变极限
蠕变极限:高温长时载荷下材料对变形的抗 力指标。 表示方法(主要有以下两种): ⑴在给定温度T(℃)下,使试样产生规定的恒 定蠕变速率的应力值, 。 ⑵在给定温度T(℃)和规定时间t(h)内,使试 样产生一定蠕变应变量的应力 值, T/ t , 1500 100N / mm2 。 /10
加工硬化与回复
加工硬化是产生蠕变的主要原因,已知的 加工硬化有主要三种:
1.位错交互作用引起的硬化; 2.位错交截引起的硬化; 3.Cottrol-lomer不动位错引起的硬化;
ห้องสมุดไป่ตู้
应力下的回复主要是有两个过程:其一是 位错的再排列,即多边化;其二是由于正 负位错结合而消失。它一般是由刃型位错 的攀移运动和螺型位错的交滑移来实现的。
4.2 持久强度
持久强度:在给定温度T(℃)下,在规定时 间内t(h)内发生蠕变断裂的应力,记做
tT , 1700 30 N / mm2 10
3
一般认为,在给定温度下的持久强度和断裂 寿命有如下关系: t=Aσ –β 其中,A、β 是与试验温度、材料有关的常数。
4.3 持久塑性
晶粒大小 一般地说,在低温下,晶粒小的材料比晶 粒大的材料蠕变强度高;在高温下,晶粒大 的材料蠕变强度高;当温度介于两者之间 时,蠕变强度在某一晶粒度下最小,大于或 者小于这一晶粒度,蠕变强度都将加大。 在低温下,蠕变主要是晶内滑移引起的, 所以晶界多的细晶材料蠕变强度高;但在高 温下,蠕变主要是晶界滑移引起的,所以晶 界少的粗晶材料蠕变强度高。
焊接区热影响区示意图
熔敷金属和热影 响区往往硬化,而在 热影响区和原母材取 交界附近常常发生某 种程度的软化。不同 的金属焊接时,焊接 边界和熔合区及其边 界容易出现组织和材 质方面的缺点。 另外,由于焊接 残余应力的影响,蠕 变特性也有一些变化。
我们先以中温蠕变为例,对其三个阶段 的蠕变机理进行一定程度的探讨。
3.1、对减速蠕变的理论解释
消耗理论 位错在应力和热运动的影响下,一部分位 错超越障碍而移动。即认为从容易的开始, 逐次通过障碍,最后所有的位错都能移动, 由于能够移动的位错量减少了,所以蠕变速 度就减小了。
3.2、对稳态蠕变的理论解释
固溶元素 在很多情况下,固溶元素的含有量越大, 蠕变强度越高。然后有的杂质元素,如Pb中 的Ti一样,对蠕变强度完全没有影响;而Cu 中的Zn却反而是蠕变强度减小。 因而固溶元素的这种效应依元素种类及基 体元素的不同而不同。
固溶元素影响蠕变强度的机理
对扩散常数的影响; 与位错弹性的相互作用 Cottrell效应; 对堆剁层错能的影响; 铃木效应; 短程有序点阵。
5
4.1 蠕变极限
蠕变极限的确定 : 除了美国法以外,多数方法是在较高的应 力下通过100小时以内的短时间蠕变试验来 决定蠕变极限。 尤雷特泽法是取载荷-应变速率为对数作 图所得曲线的转折点的应力。 NPL法是由最小应变速率求蠕变极限,试 验必须测定加载40天后(约1000h)的应变 速率。
蠕变极限是以蠕变变形来规定的,它适 用于高温运行中要严格控制变形的零件,如 涡轮叶片。对于某些高温下工作的零件,蠕 变变形很小或是对变形量要求不严格,例如, 锅炉、管道等构件,只要求零件在使用期内 不发生断裂,这时要用持久强度来评价;在 高温长时间工作,材料可能有脆化倾向,这 时要求测定持久塑性。
当所加应力或温度条件变化时
(a)给定温度,不同应力下的蠕变曲线 (b)给定应力,不同温度下的蠕变曲线
注:这里的σ 都是在屈服强度之上的应力
2.1、低温低应力作用下
蠕变曲线的形状如同上图σ 3、σ 4,T3、T4所示, 该种蠕变称为α 蠕变。其蠕变表达式为: ε α =ε 0+α [ln(γ t+1)]S 其中, α ,γ 为常数,S是与材料有关的常数;对 纯金属,S=1。 低于200K的多晶铜和铝,室温下的一些六角金属 和氯化钠都属于这一类。
低温蠕变
目前大家比较容易接受的是Seeger所提出的林位 错理论。因为低温时没有回复,可动位错不能离 开它们的滑移面。而长程内应力和贯穿它们滑移 面的不同取向位错(林位错)阻碍它们的移动。 热激活只能帮助位错在滑移过程中克服与位错林 交截造成的阻碍,从而形成热激活割阶的过程。 这个过程实际上就是一个蠕变的过程。但是,内 应力σ是随着应变ε而增加的,所以割穿一个不同 取向位错所需的能量也随之增加,其结果就是α蠕 变速率(低温蠕变)随时间变慢,最终趋于稳定。
蠕变现象的基本性质
基本现象
理论上主要因素
发生条件
微小滑移
滑移
位错移动
集团的移动
单晶体 纯金属 多晶体 纯金属
回复(多边化) 位错再排列引起亚晶粒形成 晶界阻碍
晶界滑移 固溶硬化 时效硬化, 析出硬化
位错受阻
晶界的非晶质滑移;多边化
Cottrell效应;堆剁层错效应; 固溶合金 有序晶格硬化等 奥罗万硬化 多相合金 费希尔-哈特-普赖硬化
析出物 增加固溶元素来提高蠕变强度,对于单相、 合金来说,是有限的,而且在高温下不能得 到很高的强度。目前的高温耐热合金都是用 硬的细小第二相均匀分散到基体金属中来提 高蠕变强度。 就析出相来说,有碳化物、氮化物、金属 间化合物或氧化物等。它们的应用应视具体 的合金及使用条件而变化。
热处理 一般地说,低温短时间蠕变强度以短时间 抗拉强度高的钢材为佳,然而与高温长时间 蠕变强度相比,最初的强度影响小,而且有 这样一种倾向,即:蠕变时的组织变化大, 强度低。 因此,耐热钢必须按照使用温度、时间 等,选择最适当的热处理。
蠕变断裂也分为韧性和脆性两种,一般前 者表现为穿晶断裂,有颈缩;后者表现为 沿晶断裂,无颈缩。 沿晶断裂时,微裂纹按其形状,大致可分 为两类,一为V型裂纹,或叫楔型裂纹,它 们都产生于三晶交界处;另一为沿晶界产 生的O型裂纹,它们形状多半接近圆形或椭 圆形。出现这种O型裂纹的晶界与拉伸应力 方向往往成90°,其数目与蠕变量成正比。
位错运动
1、刃型位错的攀移(图)
交滑移
b b
b
b b
3.3、对加速蠕变的理论解释
一般认为,加速蠕变段的原因有两个:一 是晶界的应力集中引起的微小裂纹;另一个 是点阵缺陷在晶界处析出,在这里产生空位。 此外,还需考虑试样本身出现的颈缩。这些 加在实际应力上,就导致了蠕变速度越来越 快。
从加速蠕变到蠕变断裂
2、蠕变的定义
狭义蠕变:在恒定温度恒定拉伸载荷下,试 件变形随时间缓慢增大的现象。 广义蠕变:在固体受恒定的外力作用下,变 形随时间而增加的现象。
注:一般我们通常所说的蠕变都是指狭义蠕变
典型蠕变曲线
蠕变曲线--在一定温度和应力作用下,应变 与时间的关系曲线。 典型蠕变曲线分为三个阶段:减速蠕变、恒速 蠕变和加速蠕变。
持久塑性用持久断裂后的延伸率和断面收 缩率来表示,它反映材料在高温长时间作 用下的塑性性能,是衡量材料蠕变脆性的 一个重要指标,如锅炉中的导管、汽轮机 中螺栓易发生脆断。
4.4 影响蠕变强度的因素
晶体结构 蠕变一部分是由于位错的上升运动产生的, 所以空位的移动或原子的迁移,即自扩散有很 大的影响。而自扩散常数又与晶体结构有关, 就晶型来说,金刚石型自扩散常数最小,面心 立方、密排立方次之,体心立方最大。 如600℃以上,奥氏体系耐热钢的强度比铁 素体系耐热钢大。
蠕变
1、蠕变现象 2、蠕变的定义 3、蠕变的理论解释 4、蠕变强度及金属组织 5、蠕变试验方法 6、实际中的蠕变断裂 7、蠕变资料
1、蠕变现象
蠕变变形
蠕变断裂
不同的材料出现明显的蠕变温度不同,其中: ◆碳素钢: TC≥300~500℃ ◆合金钢: TC≥350~400℃ ◆低熔点金属如铅、锡等在室温就出现蠕变 ◆高熔点的陶瓷材料,如Si3N4在1100℃以 上也不发生明显蠕变 ◆高聚物在室温以下就发生蠕变 不同材料的蠕变温度与其熔点有关,一般大 约为熔点的0.3-0.7左右