当前位置:文档之家› 锂电池调研报告

锂电池调研报告

动力锂电池充放电控制策略调研报告目录1. 动力锂离子电池 (3)2. 动力锂离子电池充放电策略 (4)2.1 锂电池充放电特性 (4)2.2 锂电池充电控制策略 (5)2.2.1 恒流恒压充电 (5)2.2.2 模糊控制充电 (6)2.2.3 锁相充电法 (8)2.2.4 灰度预测充电 (10)2.2.5 正弦-恒流充电 (11)2.2.6 分阶段恒流充电 (12)参考文献 (14)1. 动力锂离子电池锂离子电池(下面简称锂电池)是1990年日本索尼公司首先推向市场的新型高能蓄电池,是目前世界上最新一代的充电电池。

随着成本的急剧下降和性能的大幅度提高,锂电池的生产和应用已得到迅速发展。

根据正极材料的不同,锂电池单体(cell)的标称电压从3.2V到3.7V,能量密度从100mAh/g到140mAh/g不等。

严格来说,动力锂电池是指容量在3Ah 以上的锂离子电池。

目前则泛指能够通过放电给设备、器械、模型、车辆等驱动的锂离子电池。

通过对锂电池单体进行串并联,可满足各种应用场合对电压和容量的不同的要求。

相较于传统的充电电池(镍氢电池、铅酸电池等),锂电池作为动力电池具有显著的优势:(1)高能量密度(高比能量):锂电池的比能量已能达1500Wh/kg,是镍镉电池的3倍,镍氢电池的1.5倍。

同等容量要求下,能够减轻电池系统的重量。

(2)工作电压高:一个锂电池单体的工作电压可达到3.7V,是镍镉或镍氢电池的3倍。

同等电压要求下,能够减少串联单体的数目。

(3)循环寿命长:在正常条件下,锂电池的循环次数可超过500次,磷酸亚铁锂电池可达到2000次。

(4)可快速充放电:1C充电30分钟可达到标称容量(State of Charge, SOC)的80%以上,磷酸亚铁锂电池可以在10分钟内充电到90%SOC。

这使得锂电池电动汽车能够实现快充,更加方便。

(5)工作温度范围宽:工作温度为-25~45℃,随着电解液和正极的改进,有希望能扩宽到-40~70℃。

这使得锂电池系统能适应各种环境。

除此之外,锂电池还具有无污染、无记忆效应、自放电率低和可塑性强等优点。

但锂电池也存在以下缺点:(1)成本高:主要是正极材料价格较高。

(2)不能耐受过充、过放,温度过高时还会有爆炸危险。

必须有特殊的保护电路以防止过充。

尤其是多个单体串联成电池组(pack)时,由于单体的特性不一致造成的不均衡,会导致某些单体过充而另外一些充不满,为保护电池需要加均衡电路或在充电策略上做改进。

这些都增加了充电的成本。

2. 动力锂离子电池充放电策略2.1 锂电池充放电特性锂电池对于充放电电压、电流和温度都有着较高的要求。

(1)充放电电压锂电池对充电终止电压的精度要求很高(3.7V单体的充电终止电压为4.2V),一般误差不能超过额定值的1%。

充电终止电压过高,会缩短锂电池的寿命。

在4.2V附近时,1%的充电终止电压误差将会导致寿命变化1/3,容量变化8%[1]。

过高的充电终止电压虽然可使容量增加,但对寿命的影响很大。

若造成过充,还会对电池造成永久性损害。

充电终止电压过低,又会使电池充电不完全,电池的可使用时间变短。

因此,为保护电池寿命,可以考虑提高对充电终止电压精度的要求。

锂电池也存在放电终止电压(3.7V单体的放电终止电压为3V)。

对于过放的锂电池,在充电前需要进行预处理,激活电池内部被过放的单元,之后再按一般模式充电。

(2)充放电电流锂电池的充电率(充电电流)应根据电池生产厂商的建议选用。

虽然某些电池的充电率可达2C,但常用的充电率为0.25C~1C。

这是由于充电过程中,电能无法100%转换为化学能,有一部分会转换成热能使电池温度升高。

大电流充电时产热严重,降低了充电效率,还会有爆炸的危险。

另外,若一直采用恒流充电,虽然可以在一定程度上缩短充电时间,但很难保证电池充满,如果对充电结束控制不当还会造成过充。

与充电类似,锂电池大电流放电也会产热严重,使电池的放电容量降低。

与充电不同的是,锂电池对于放电的耐受比充电要强,很多锂电池是充坏的,而放坏的则很少。

锂电池最大的放电率可达2C~3C,对于电动汽车瞬时加速等应用是非常有利的。

(3)充放电温度锂电池的充电温度一般被限制在0~60℃范围内。

不同的温度下,锂电池的可接受的充电电流是不同的[2]:温度低于0度时,电池的活性较差,内阻较高,可接受充电电流的能力弱,不适宜充电[3];0~10℃,应以较小的电流充电;在10~20℃,电池的活性增强,可以以较大电流充电;20~50℃是电池工作的较好温度范围,因此可以以大电流充电;温度再往上升时,电池充电比较危险,并且电池在高温的情况下容量衰减较快,所以也不适宜充电[4]。

锂电池的放电温度为-25~45℃并有望拓宽。

与充电类似,温度过低或过高时也不适宜大电流放电。

综上所述,锂电池的充放电存在多重限制,对充放电的控制要求很高。

2.2 锂电池充电控制策略常见的锂电池充电方法有涓流充电(Constant Trickle Current charge),恒流充电(Constant Current Charge, CC)和恒流恒压充电(Constant-Current and Constant-V oltage Charge, CC-CV)等[5]。

为了缩短充电时间,减少发热和提高充电效率,国内外学者做了诸多研究,主要是对以上常规充电方法的改进,包括模糊控制充电法(Fuzzy-Controlled Charge)[6-8]、锁相充电法(Phase-Locked Charge)[9-14]、灰度预测充电法(Grey-Predicted Charge)[15-17]、内阻调节充电法(Built-in Resistance Compensation, BPR)[12, 18-20]、正弦电流充电法(Sinusoidal Current Charger, Sin-CC)[21-23]、分阶段恒流充电法(Five-Step Charge)[24-26]等。

下面对这些方法进行介绍。

2.2.1 恒流恒压充电涓流充电的实现简单,成本低,且较安全,但充电时间最长(长达10多个小时),因此被称为隔夜充电(Over Night Charge)。

为了缩短充电时间,采用比涓流充电大得多的充电电流对电池进行充电,也即恒流充电。

恒流充电的缺点是须准确地检测电池是否充满,常常会造成过冲或过放。

恒流恒压充电法克服了涓流充电和恒流充电的缺点,得到了广泛应用,其充电过程如图1所示。

图 1 恒流恒压法充电过程恒流恒压充电的理论基础是锂电池充电过程中其寄生电阻(Equivalent Series Resistance, ESR)会发生变化,考虑ESR 上的损耗过大会导致严重发热,将充电分为三个阶段进行。

(a )预充电阶段。

充电开始之前首先要检测电池端电压bat V ,若小于放电截止电压L V ,表明电池被过放了,ESR 很大,需要用涓流充电对其进行预充电进行修复。

若电池电压大于L V ,则不需要进行预充电。

(b )恒流充电阶段。

当Vb 在L V 和充电终止电压H V 之间时,ESR 较小,可以恒定的较大电流对电池进行充电。

在此阶段中,bat V 是不断上升的。

当bat V 达到充电终止电压H V ,恒流阶段结束,转入恒压阶段。

(c )恒压充电阶段。

在这一阶段中,以充电截止电压对电池进行恒压充电,电池电流是不断下降的,当充电电流小于1/40C(也有其他数值,如1/10C)时,恒压阶段结束。

恒流恒压充电的优点是能够在相对短的时间将电池充到比较高的SOC ,比较安全。

缺点是要求充电装置能够在恒压和恒流两种模式下切换,且要能够精准地控制充电截止电压。

恒流恒压充电中,恒流充电阶段占据了整个充电时间的25~40%,充进了75~80%的容量,剩余的大量时间都是恒压充电阶段,只充进了20~25%的容量[27],因此在要求快速充电的应用场合,常常省掉恒压阶段,只进行恒流充电。

2.2.2 模糊控制充电文献[6]在锂电池充电中采用了模糊控制的思想,提出了所谓模糊控制的主动荷电状态控制器(Fuzzy-Controlled Active State-of-Charge Controller, FC-ASCC )。

图 2和图 3分别为模糊控制充电策略系统框图和充电时序图。

图 2 模糊控制充电策略系统框图图 3 模糊控制充电时序在CC 阶段结束后,充电开始遵循图 3所示的时序。

电池将脱离充电控制一小段时间S T ,分别在1S T 时段内进行开路电压检测(Open Circuit V oltage Detection, OVD),在2S T 时段内进行充电电流检测(Charging Current Detection, CCD),检测得到开路电压o v 和充电电流s i ,将其作为模糊控制器的输入,输出则是下一阶段的充电电流c i 。

S T (检测和控制时间)+C T (充电时间),取决于控制器的速度和电池的充电安全区域(电池的电压和电流范围)。

图 4 模糊控制充电的效果模糊控制充电的优点是充电时间短,根据[7]中的实验结果,在使充电处于安全区域(Safe Area),即不过充的前提下,FC-ASCC充电法比CC-CV的充电速度提升了23%。

2.2.3 锁相充电法锁相充电法的实现主要是基于自动跟踪和锁相。

锁相环的基本原理如错误!未找到引用源。

所示。

图 5 锁相环基本原理Xi、Xo、Xe、Vp分别代表输入相/频、输出相/频、相/频误差和泵升电压。

Xi和Xo通过相/频比较器(Phase/Frequency Comparator)比较作差得到Xe后输入低通滤波器,低通滤波器在这里作为压控振荡器(V oltage-Controlled Oscillator , VCO)的相/频驱动。

整个系统就像是一个锁相环,使VCO的输出Xo接近输入Xi,直到完全相等后锁相才不起作用。

图6为锁相电池充电系统框图,它由相位比较器,低通滤波器(由Current Pump、锂电池和差分放大器构成)和压控振荡器组成。

图 6 锁相电池充电系统框图首先,锂电池电池电压被检测后送到差分放大器。

差分放大器放大电池电压以适应压控振荡器所能接受的电压范围,然后将其转换成频率后做反馈,与输入频率比较后得到相位误差e p 。

最后,e p 输入到Current Pump 产生适当的电流给锂电池充电。

由于其本身的特点,锁相充电实际上有三个阶段,大电流充电阶段、变电流充电阶段和浮充阶段。

在频率跟踪阶段,LPF 输出最大限幅值给VCO 以减小频率误差,使Current Pump 输出大电流给电池充电;在相位跟踪阶段,LPF 的输出逐渐减小,使Current Pump 输出逐渐减小的充电电流,也即变电流充电阶段;最后PLBCS 完成了锁相,输入完全等于输出,e p 为零,充电完成。

相关主题