当前位置:文档之家› 光电传感器的发展及其应用

光电传感器的发展及其应用

光电传感器的发展及其应用摘要:光电式传感器(photoelectric transducer),基于光电效应的传感器,在受到可见光照射后即产生光电效,将光信号转换成电信号输出。

它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。

关键词:光电传感器、光电效应、发展、应用实例1 引言光电传感器由于反应速度快,能实现非接触测量,而且精度高、分辨力高、可靠性好,加之半导体光敏器件具有体积小、重量轻、功耗低、便于集成等优点,因而广泛应用于军事、宇航、通信、检测与工业自动化控制等多种领域中。

当前,世界上光电传感领域的发展可分为两大方向:原理性研究与应用开发。

随着光电技术的日趋成熟,对光电传感器实用化的开发成为整个领域发展的热点和关键。

2 光电传感器原理及应用2.1光电式传感器光电传感器又称光传感器,其基本原理是以光电效应为基础,通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如图1,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。

光电传感器一般由光源,光学通路和光电元件三部分组成。

光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛[1]。

图 1光电传感器的电源要是一个恒光源,电源稳定性的设计至关重要,电源的稳定性直接影响到测量的准确性,常用光源有以下几种:⑴、发光二极管是一种把电能转变成光能的半导体器件。

它具有体积小、功耗低、寿命长、响应快、机械强度高等优点,并能和集成电路相匹配。

因此,广泛地用于计算机、仪器仪表和自动控制设备中。

⑵、丝灯泡这是一种最常用的光源,它具有丰富的红外线。

如果选用的光电元件对红外光敏感,构成传感器时可加滤色片将钨丝灯泡的可见光滤除,而仅用它的红外线做光源,这样,可有效防止其他光线的干扰。

⑶、激光激光与普通光线相比具有能量高度集中,方向性好,频率单纯、相干性好等优点,是很理想的光源。

由光源、光学通路和光电器件组成的光电传感器在用于光电检测时,还必须配备适当的测量电路。

测量电路能够把光电效应造成的光电元件电性能的变化转换成所需要的电压或电流。

不同的光电元件,所要求的测量电路也不相同。

下面介绍几种半导体光电元件常用的测量电路。

半导体光敏电阻可以通过较大的电流,所以在一般情况下,无需配备放大器。

在要求较大的输出功率时,可用图2所示的电路。

图3(a)给出带有温度补偿的光敏二极管桥式测量电路。

当入射光强度缓慢变化时,光敏二极管的反向电阻也是缓慢变化的,温度的变化将造成电桥输出电压的漂移,必须进行补偿。

图中一个光敏二极管做为检测元件,另一个装在暗盒里,置于相邻桥臂中,温度的变化对两只光敏二极管的影响相同,因此,可消除桥路输出随温度的漂移。

光敏三极管在低照度入射光下工作时,或者希望得到较大的输出功率时,也可以配以放大电路,如图3所示。

图2 图3由于光敏电池即使在强光照射下,最大输出电压也仅0.6V,还不能使下一级晶体管有较大的电流输出,故必须加正向偏压,如图3(a)所示。

为了减小晶体管基极电路阻抗变化,尽量降低光电池在无光照时承受的反向偏压,可在光电池两端并联一个电阻。

或者象图3(b)所示的那样利用锗二极管产生的正向压降和光电池受到光照时产生的电压叠加,使硅管e、b极间电压大于0.7V,而导通工作。

这种情况下也可以使用硅光电池组,如图4(c)所示。

半导体光电元件的光电转换电路也可以使用集成运算放大器。

硅光敏二极管通过集成运放可得到较大输出幅度,如图4(a)所示。

当光照产生的光电流为时,输出图 4电压为了保证光敏二极管处于反向偏置,在它的正极要加一个负电压。

图4(b)给出硅光电池的光电转换电路,由于光电池的短路电流和光照成线性关系,因此将它接在运放的正、反相输入端之间,利用这两端电位差接近于零的特点,可以得到较好的效果。

在图中所示条件下,输出电压。

由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。

模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系。

模拟式光电传感器按被测量(检测目标物体)方法可分为透射(吸收)式、漫反射式、遮光式(光束阻档)三大类。

所谓透射式是指被测物体放在光路中,恒光源发出的光能量穿过被测物,部份被吸收后,透射光投射到光电元件上,如测液体、气体透明度和混浊度的光电比色计等;所谓漫反射式是指恒光源发出的光投射到被测物上,再从被测物体表面反射后投射到光电元件上,如光电比色温度计和光照度计等;所谓遮光式是指当光源发出的光通量经被测物光遮其中一部份,使投射刭光电元件上的光通量改变,改变的程度与被测物体在光路位置有关,如振动测量、工件尺寸测量;而在脉冲式光电传感器中在这种传感器中,光电元件接受的光信号是断续变化的,因此光电元件处于开关工作状态,它输出的光电流通常是只有两种稳定状态的脉冲形式的信号,多用于光电计数和光电式转速测量等场合。

光电测量时不与被测对象直接接触,光束的质量又近似为零,在测量中不存在摩擦和对被测对象几乎不施加压力。

因此在许多应用场合,光电式传感器比其他传感器有明显的优越性。

2.2 光电效应光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应。

光电效应又可分为外光电效应和内光电效应,外光电效应由爱因斯坦光电效应方程描述:hv=1/2*mv02。

式中hv为光子具有能量,h为普朗克常数,v为光频率。

m为电子质量,v0为电子逸出速度。

当光子能量等于或大于逸出功时才能产生外光电效应。

因此每一种物体都有一个对应于光电效应的光频极限。

2.3 光电传感器的发展状况1839年 A.E.贝可勒尔发现当光线落在浸没于电介液中的两个金属电极上,它们之间就产生电势,后来称这种现象为光生伏特效应。

1873年W.史密斯和Ch.梅伊发现硒的光电导效应。

1887年H.R.赫兹发现外光电效应[2]。

基于外光电效应的光电管和光电倍增管属真空电子管或离子管器件,曾在50~60年代广泛应用,直到目前仍在某些场合继续使用。

虽然早在1919年T.W.凯斯就已取得硫化铊光导探测器的专利权[3],但半导体光敏元件却是在60年代以后随着半导体技术的发展而开始迅速发展的。

在此期间各种光电材料都得到了全面的研究和广泛的应用。

它们的结构有单晶和多晶薄膜的,也有非晶的,它们的成分有元素半导体的和化合物半导体的,也有多元混晶的。

其中最重要的两种是硅和碲镉汞。

硅的原料丰富,工艺成熟,是制造从近红外到紫外波段光电器件的优良材料。

碲镉汞是碲化汞和碲化镉的混晶,是优良的红外光敏材料。

通过对光电效应和器件原理的研究已发展了多种光电器件(如光敏电阻、光电二极管、光电三极管、场效应光电管、雪崩光电二极管、电荷耦合器件等)适用于不同的场合。

光电式传感器的制造工艺也随薄膜工艺、平面工艺和大规模集成电路技术的发展而达到很高的水平,并使产品的成本大为降低。

被称为新一代摄像器件的聚焦平面集成光敏阵列正在取代传统的扫描摄像系统。

光电式传感器的最新发展方向是采用有机化学汽相沉积、分子束外延、单分子膜生长等新技术和异质结等新工艺。

光电式传感器的应用领域已扩大到纺织、造纸、印刷、医疗、环境保护等领域。

在红外探测、辐射测量、光纤通信,自动控制等传统应用领域的研究也有新发展[4]。

例如,硅光电二极管自校准技术的提出为光辐射的绝对测量提供了一种很有前途的新方法[5]。

2.4 光电传感器的分类光电元件有光敏电阻、光电二极管、光电三极管、发光二极管(LED)、光电倍增管、光电池、光电耦合器件等。

由光通量对光电元件的作用原理不同所制成的光学测控系统是多种多样的,按光电元件(光学测控系统)输出量性质,光电式传感器可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器;模拟式光电传感器按被测量(检测目标物体)方法又可分为透射(吸收)式、漫反射式、遮光式(光束阻挡)三大类。

2.5 光电传感器的应用2.5.1 光电传感器的应用特点光电传感器的应用特点有:①检测距离长。

②对检测物体的限制少。

③响应时间短。

④分辨率高。

能通过高级设计使投光光束集中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。

也可进行微小物体的检测和高精度的位置检测。

⑤可实现非接触的检测。

可无机械接触地检测物体,因此不会对检测物体和传感器造成损伤。

因此,传感器能长期使用。

⑥可实现颜色判别。

通过检测物体形成的光的反射率和吸收率根据被投光的光线波长和检测物体的颜色组合而有所差异。

利用这种性质,可对检测物体的颜色进行检测。

⑦便于调整。

在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。

2.5.2 光电传感器的应用实例2.5.2.1 测量工件表面的缺陷用光电传感器测量工件表面缺陷的工作原理如图1 所示,激光管1发出的光束经过透镜2和3变为平行光束,再由透镜4把平行光束聚焦在工件7的表面上,形成宽约0.1mm 的细长光带。

光栏5用于控制光通量。

如果工件表面有缺陷( 粗糙、裂纹等) ,则会引起光束偏转或散射,这些光被硅光电池6接收,即可转换成电信号输出[6]。

2.5.2.2 测量转速将转速变换成光通量的变化,再经过光电元件转换成电量的变化即可得到转速。

如右图所示。

被测转轴上装有调制盘(带孔或带齿的圆盘),调制盘的一边设置光源,另一边设置光电元件。

调制盘随轴转动,当光线通过小孔或齿缝时,光电元件就产生一个电脉冲。

转轴连续转动,光电元件就输出一列与转速及调制盘上的孔(或齿)数成正比的电脉冲数。

在孔(或齿)数一定时,脉冲数就和转速成正比。

电脉冲输入测量电后经放大整形,再送入频率计计数显示。

如果调制盘上的孔(或齿)数为Z,测量电路计数时间为T秒,被测转速为n(r/min),则此时得到的计数值N 为N =nZT/60其中,ZT一般取60×10m(m=0,1,2,3…)。

如图2所示为用光电传感器测量转速的工作原理。

在电动机的旋转轴上涂上黑白两种颜色,当电动机转动时,反射光与不反射光交替出现,光电元件1相应地间断接收光的反射信号,并输出间断的电信号,再经放大器及整形电路2放大整形输出方波信号,最后由电子数字显示器输出电机的转速[7]。

2.5.2.3 烟尘浊度连续检测仪如图3所示为吸收式烟尘浊度检测仪框图。

白炽平行光源通过烟筒由光检测器接收,转换成随浊度变化的相应电信号,运算放大器接收此信号,当运算放大器输出的浊度信号超出规定值时,多谐振荡器工作,其信号经放大推动喇叭发出报警信号[8]。

相关主题