当前位置:文档之家› 高考专题_圆周运动复习

高考专题_圆周运动复习

圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。

2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。

它们之间的关系大多是用半径r 联系在一起的。

如:Tr r v πω2=⋅=,22224T r r r v a πω===。

要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。

(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22 ,公式中的线速度v 和角速度ω均为瞬时值。

只适用于匀速圆周运动的公式有:224Tra π= ,因为周期T 和转速n 没有瞬时值。

题型:传动装置例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。

b 点在小轮上,到小轮中心的距离为r 。

c 点和d 点分别于小轮和大轮的边缘上。

若在传动过程中,皮带不打滑。

则( )A .a 点与b 点的线速度大小相等B .a 点与b 点的角速度大小相等C .a 点与c 点的线速度大小相等D .a 点与d 点的向心加速度大小相等解析:本题的关键是要确定出a 、b 、c 、d 四点之间的等量关系。

因为a 、c 两点在同一皮带上,所以它们的线速度v 相等;而c 、b 、d 三点是同轴转动,所以它们的角速度ω相等。

所以选项C 正确,选项A 、B 错误。

设C 点的线速度大小为v ,角速度为ω,根据公式v=ωr 和a=v 2/r 可分析出:A 点的向心加速度大小为r v a A 2=;D 点的向心加速度大小为:rv r r r a D 222)2(4=⋅=⋅=ωω。

所以选项CD 正确。

说明:在分析传动装置的各物理量时,要抓住等量和不等量之间的关系。

如同轴各点的角速度相等,而线速度与半径成正比;通过皮带传动(不考虑皮带打滑的前提下)或是齿轮传动,皮带上或与皮带连接的两轮边缘的各点及齿轮上的各点线速度大小相等、角速度与半径成反比。

练习1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。

假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。

2.图示为某一皮带传动装置。

主动轮的半径为r 1,从动轮的半径为r 2。

已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。

下列说确的是( )。

A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为21r r n D .从动轮的转速为12r r n 3.图3-7中圆弧轨道AB 是在竖直平面的1/4圆周,在B 点,轨道的切线是水平的。

一质点自A 点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为______,刚滑过B 点时的加速度大小为_____。

3.描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是做匀速圆周运动的物体所受外力的合力。

向心力是根据力的作用效果命名的,不是一种特殊的性质力。

向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。

例如水平转盘上跟着匀速转动的物体由静摩擦力提供向心力;带电粒子垂直射入图3-7AB图3-1图3-4匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力;电子绕原子核旋转由库仑力提供向心力;圆锥摆由重力和弹力的合力提供向心力。

做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。

(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:22224TrmrmrvmFπω===其中r为圆运动半径。

(3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。

(4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。

题型:水平面圆周运动图形受力分析利用向心力公式例题:如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m,B、C质量均为m,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说确的是()A. C物的向心加速度最大;B. B物的静摩擦力最小;C. 当圆台转速增加时,C比A先滑动;D. 当圆台转速增加时,B比A先滑动。

解析:当三者都相对圆盘静止时,角速度相同,所以向心加速度分别为:ω2R 、ω2R 、ω22R ,所以C物的向心加速度最大,选项A 正确。

A、B、C三个物体随圆台转动所需要的向心力由静摩擦力提供,大小分别为:2mω2R 、mω2R 、mω22R ,B物体的静摩擦力最小,选项B 正确。

要比较哪个物体最先打滑,就要比较哪个物体与圆台间的最大静摩擦力,三者为:μ2mg、μmg、μmg,可见C 物体先滑动,选项C 正确,B 错误说明:一定要注意做匀速圆周运动的物体受力能提供的向心力和实际运动所需要的向心力的关系,当旋转圆转速增加时,物体随圆盘转动需要的向心力(静摩擦力提供)也要增加,当提供不足时物体就做离心运动。

练习1. 如图3—12所示,一转盘可绕其竖直轴在水平面转动,转动半径为R ,在转台边缘放一物块A ,当转台的角速度为ω0时,物块刚能被甩出转盘。

若在物块A 与转轴中心O 连线中点再放一与A完全相同的物块B (A 、B 均可视为质点),并用细线相连接。

当转动角速度ω为多大时,两物块将开始滑动?2.(08)有一种叫“飞椅”的游乐项目,示意图如图14所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动。

当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系。

离心运动和向心运动 1.离心运动(1)定义:做圆周运动的物体,在所受合外力突然消失或减小到不足以提供做圆周运动所需向心力情况下,做逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.(3)受力特点:当实际提供的向心力F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向做匀速直线运动;当0<F <mrω2时,物体逐渐远离圆心.如图所示.2.向心运动:当提供的向心力大于做圆周运动所需向心力,即F >mrω2时,物体渐渐向圆心靠近.3.注意:物体做离心运动不是物体受到所谓离心力的作用,而是物体惯性的表现.物体做离心运动时,并非沿半径方向飞出,而是运动半径越来越大或沿圆周切线方向飞出.图3-12【例】下列关于离心现象的说确的是 ( ) A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消失时它将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消失时它将做曲线运动 竖直面变速圆周运动的两类模型由于物体在竖直平面做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同。

如图3-7所示,由于绳对球只能产生沿绳收缩方向的拉力,所以小球通过最高点的临界条件是:向心力只由重力提供,即Rv m mg 2=,则有临界速度gR v =。

只有当gR v ≥时,小球才能通过最高点。

如图3-8所示,由于轻杆对球既能产生拉力,也能产生支持力,所以小球通过最高点时合外力可以为零,即小球在最高点的最小速度可以为零。

这样gR v =就变成了小球所受弹力方向变化的临界值,即当v <gR 时,小球受向上的弹力;当gR v =时,球和杆之间无相互作用力;当v >gR 时,球受向下的弹力。

练习1.如图3-14所示,一细圆管弯成的开口圆环,环面处于一竖直平面。

一光滑小球从开口A 处进入管,并恰好能通过圆环的最高点。

则下述说确的是( ) A.球在最高点时对管的作用力为零 B.小球在最高点时对管的作用力为mgC.若增大小球的初速度,则在最高点时球对管的力一定增大D.若减小小球的初速度,则在最高点时球对管的力可能增大2. 如图3-13所示,半径为R 的光滑半圆球固定在水平面上,顶部有一小物体A 。

今给它一个水平初速度gR v =0,则物体将( )A.沿球面下滑至M 点B.沿球面下滑至某一点N ,便离开球面做斜下抛运动C.立即离开半球面做平抛运动D.以上说法都不正确匀速圆周运动的多解问题匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其中一个做匀速圆周运动,另一个做其他形式的运动。

由于这两种运动是同时进行的,因此,依据等时性建立等式来解待求量是解答此图3-8图3-7图3-13图3-14类问题的基本思路。

特别需要提醒注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,【例】质点P 以O 为圆心做半径为R 时,有一质量为m 的另一质点Q 受到力F 某时刻的速度相同,则F 的大小应满足什么条件?★解析 点时P 、Q 速度方向才相同,即质点P 转过)43(+n 周)3,2,1,0( =n 经历的时间)3,2,1,0()43( =+=n T n t ①质点P 的速率TRv π2= ②在同样的时间,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得t mFv =③练习:如图14。

相关主题