地基沉降的计算方法地基在荷载作用下,沉降将随时间发展,其发展规律可以通过土体固结原理进行数值分析来估算。
但是由于固结理论的假定条件和确定计算指标的试验技术上的问题,使得实测地基沉降过程数据在某种意义上较理论计算更为重要。
通过大量的沉降观测资料的积累,可以找出地基沉降过程的具有一定实际应用价值的变形规律,还可以根据路基施工时的实测沉降资料和已取得的经验进行估算,是工程中最为常用的方法。
根据经验沉降预测一般要经过3~6个月恒载(或预压)的观测才能建立。
曲线回归法法是变形预测最常用的方法,德国无碴轨道的经验,认为当曲线回归的相关系数不低于0.92时,所确定的沉降变形趋势是可靠的;当预测的6个月以后的沉降与实际沉降的偏差小于8mm 时,说明预测是稳定的,但要达到准确的预测还要求最终建立沉降预测的时间t 应满足下列条件s(t)/s(t=∞)≥75%式中:s(t): t 时间的沉降观测值; s(t=∞): 预测的总沉降。
通常利用沉降资料进行预测路堤沉降随时间发展的常用方法有以下几种: 1 双曲线法 双曲线方程为:bt a tS S t ++=0 (3.3.2-1)bS S f 10+= (3.3.2-2)式中:t S ——时间t 时的沉降量;f S ——最终沉降量(t =∞);S 0——初期沉降量(t =0);a、b——将荷载不再变化后的3组早期实测数据代入上式组成方程组求得的系数。
沉降计算的具体顺序:(1)确定起点时间(t=0),可取填方施工结束日为t=0;(2)就各实测计算t/(S t-S0),见图3.3.2-1;(3)绘制t与t/(S t-S0)的关系图,并确定系数a,b见图3.3.2-2;(4)计算S t;(5)由双曲线关系推算出沉降S~时间t曲线。
图3.3.2-1用实测值推算最终沉降的方法图3.3.2-2求a,b方法双曲线法是假定下沉平均速率以双曲线形式减少的经验推导法,要求恒载开始实测沉降时间至少半年以上。
2 固结度对数配合法(三点法)由于固结度的理论解普遍表达式为:t e U βα-⋅-=1(3.3.2-3)不论竖向排水、向外或向内径向排水,或竖向和径向联合排水等情况均可使用,所不同的只是α、β值。
根据固结度定义:ddt t S S S S U --=∝(3.3.2-4)式中: S d ――瞬时沉降量;∝S ――最终沉降量。
由式(3.3.2-3)和式(3.3.2-4)联立可得:)1(t t d t e S e S S ββαα---+=(3.3.2-5)为求t 时刻的沉降,上式右边有四个未知数,即S 、S d 、α、β。
在实测初期沉降一时间曲线(S-t)上任意选取三点:(t 1,S 1),(t 2,S 2), (t 3,S 3)并使t 3-t 2=t 2-t l ,将上述三点分别代入上式中,联立求解得参数和最终沉降量S 以及S d 的表达式,其中S d 的表达式中还含有α这个变量。
一般在求S d 时,α可采用理论值或根据实测资料计算,将所求得的β,S, S d 分别代入式(3.3.2-5)中便可得出任意时刻的沉降。
以下是具体求解过程: 11)1(1t d t e S e S S ββαα--∝+-=(3.3.2-6) 1212)1(2ββαα--∝+-=eS eS S d(3.3.2-7)33)1(3ββαα--∝+-=e S e S S d(3.3.2-8)由此解得:2312)(21S S S S e t t --=-β(3.3.2-9)231212ln 1S S S S t t ---=β (3.3.2-10))()()()(2312232123S S S S S S S S S S S ------=∝(3.3.2-11)ββαα--∝--=ee S S S t d )1( (3.3.2-12)a. 连接S -t 曲线时,应对S -t 曲线进行光滑处理,即尽量使曲线光滑使之成为规律性较好的曲线,然后再在曲线上选点;b. 为了减少推算误差提高预测精度,要求三点时间间隔尽可能大,即选取的(t 2-t 1)尽可能大,因此要求预压时间长;c. 本法要求实测曲线基本处于收敛阶段才可进行。
3 抛物线法对于有些情况,沉降曲线在初期并不表现双曲线或指数曲线的形式,而在沉降一时间对数坐标系(S-lnt)中沉降曲线可由两部分组成,第一部分可由抛物线来拟合,第二部分即次固结部分可由直线拟合;第一部分和第二部分发生的量级和时间取决于土层固结后达到的孔隙比所对应的当量固结应力,只要运营期的有效应力小于预压期末的固结应力,次固结可以忽略不记,否则,就应该考虑次固结的影响。
实践证明,除有机质含量很高的土外,沉降量主要集中在第一部分,沉降曲线的一般表达式为:S =a(lgt)2 +blgt +c(3.3.2-13)式中参数a, b, c 可用优化方法求得。
4 指数曲线法指数法方程为[]m Bt t S Ae S --=1 (3.3.2-14)式中:S m ――最终沉降;A ,B――系数求法同双曲线法中a ,b 。
指数曲线法和双曲线法简单实用,但是前提是假定荷载一次施加或者突然施加的,这与实际情况不符,因此其方法尚待改进,下面的修正指数曲线法将路堤荷载分为若干个加载阶段,将各级荷载增量所引起的沉降叠加。
5 修正指数曲线法与修正双曲线法图3加荷与沉降发展曲线对于多级加荷的、路堤沉降曲线“台阶状”发展的情况,可把常规的指数曲线或双曲线模型拓展为:[]∑=--=mk k Bt t S Ae S 11(3.3.2-15)S t =∑++m1t ok tt-)(K S S α (3.3.2-16) 式中:m 为加荷的总级数;t 为沉降预测时刻t i 到第k 级荷载施加时刻t k的时间间隔(图3); S k 为第k 级荷载增量所引起的最终沉降量,当加荷速率与土层状况不变时,不考虑地基土的非线性特性,S k 与荷载大小成正比,则有 S k =C ∆ P k ,∆P k 为第k 级荷载增量;A ,B ,C 均为反应土体固结性质的参数,设其与荷载的施加无关,视为常量。
式4-1就变为:[]∑=-∆-=mk k Bt t P C Ae S 11(3.3.2-17)K mt t P C ttd S ∆+∂+=∑=)(1(3.3.2-18) 式中:KOKP C S d ∆=根据沉降实测值,采用试算法确定式(4-2)中的参数A ,B ,C ;将已确定出的参数带回上述经验公式模型中,分别计算各级荷载在t i 时刻所引起的沉降量,将各级荷载在t i 时刻所引起沉降量进行叠加,即得t i 时刻总沉降量。
修正指数曲线法与修正双曲线法,还可预测后期增加荷载(如对未设预压土地段,对后期增加的轨道及列车荷载)的沉降;设已有m 1级荷载有沉降观测资料,要观测m 2级荷载作用后的t i 时刻沉降,则先令m =m 1,用实测资料拟合式(4-3)中的参数A 、B 、C 或式(4-4)中的参数a.c.d 。
再令m =m 2将拟合的参数代入用上两式中的任何一式可求得t i 时的沉降。
参数拟合用0.618优选法,使各观测时刻的计算沉降与实测沉降之差的平方和最小者,即为所要求的参数。
对路堤,填土荷载宽度随路堤的升高而变小。
荷载增量在地基中应力扩散影响的深度也变小。
考虑这已因素,参照分层总和法计算沉降的原理,认为与沉降直接相关的是地基中的附加应力。
沉降与附加应力沿深度分布土的面积成正比,而不是与作用在地面的荷载强度成正比,因此对不同荷载宽度,按在地基中相应的附加应力沿深度分布图的面积比,将上部填土荷载打折来计算沉降。
6 沉降速率法方程为: S =mS c (3.3.2-17)c t t t S U P Pm S ⎥⎦⎤⎢⎣⎡+-=0)1((3.3.2-18)t t e U βα--=1(3.3.2-19)式中: S c —固结沉降量;m —综合性修正系数;P t —t 时的累计荷载; P 0—总的累计荷载; U t —t 时的固结度; β—回归计算得到的系数;28п—α或根据地基固结排水条件取值。
在恒载条件下,可得沉降速率为:t c v e AS S β-=(3.3.2-20))(81120--=∑=n n t tni n e e q P A ββπ(3.3.2-21)式中: q n —第n 级的加荷速率;t n ,t n-1—第n 级加荷的终点和始点时间; A -常数;P 0-总的累计荷载。
通过lnS t 和t 的数据进行线性回归分析。
求出A 、S C 、β,根据沉降计算公式和用户交α值反算各级荷载的m ,取平均值为m 的最终值,即可求得任意时间沉降。
此外,也可根据下面两式求竖向与水平固结系数: 只有竖向排水时:竖向排水与水平反排水共存时: 其中:H —最大排水增加;d e —地下排水体的有效排水直径;n —井径比,即排水体的有效直径与排水体直径比。
沉降速率法要求输入各个观测时刻的沉降速率为分析依据,使用于软土层较224H C v ∏=β2)(2284e n Hv d F C H C +∏=β厚的填土速率较均匀的情况。
同时要求恒载开始后的实测沉降时间至少在半年以上。
7 星野法星野根据现场实测值证明了总沉降(包括剪切应变的沉降在内)是与时间平方根成正比。
沉降计算公式为:S =S 0+S t =S 0+)(+-o 2ot -t k 1t t AK(3.3.2-22)式中: S 0――假定的瞬时沉降;S t ――随时间变化的沉降量; t 0――假定瞬时沉降时的时间; 221K A ――直线截距; 21A――直线斜率。
将上式改变为直线方程形式:)(11)(0222200t t A K A S S t t -+=--(3.3.2-23)式(3.3.2-22)适合于荷载瞬时施加情况下的沉降曲线,但在实际施工中,荷载是逐级增加的,因此必须加以修正,在加载方法规则的情况下,以加载期间的中点作为瞬时起点t 0,在加载方法不规则的情况下,应根据实测沉降曲线的趋势在加载的初期适当假定一个瞬时加载的起点t 0和相应的沉降S 0。
星野法推求最终沉降量的步骤如下:(1) 假定几组t 0和S 0,根据实测值点绘(t-t 0)/(S-S 0)~(t-t 0)的关系曲线。
(2) 取最符合线性关系的直线,求出相应的系数A ,K ; (3) 将A, K 值代入式(3.3.2-22)计算。
本方法要求恒载开始后的实测沉降时间至少半年以上。
8 Asaoka 法用以下简化递推关系可近似地反应一维条件下以体积应变表示的固结方程,利用此简化递推关系可用图解法来求解最终沉降值。
110-⋅+=i i S S ββ(3.3.2-24)图解法推算步骤如下:① 将时间划分成相等的时间段△t ,在实测的沉降曲线上读出t 1, t 2.所对应的沉降值S l ,S 2... ...,并制成表格;② 再以S i-1和S i 坐标轴的平面上将沉降值S l ,S 2……以点(S i , S i-1)画出,同时作出S i =S i-1的 45直线;③ 过一系列点(S i , S i-1)作拟合直线与 45直线相交,交点对应的沉降为最终沉降值;在Asaoka 法推算的过程中,t ∆的取值对最终沉降量的推算结果有直接的影响。