当前位置:文档之家› 煤液化技术

煤液化技术

《近代化学》课程作业煤液化技术的研究现状The research status of coal liquefaction technology姓名:专业:时间:煤液化技术的研究现状能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。

煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。

相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。

1煤直接液化煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。

理论上讲,煤加氢液化分为轻度加氢和深度加氢。

通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。

1.1煤直接液化的技术的进展煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元;②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。

具体流程图如图1所示:图1:煤直接液化工艺流程简图自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。

以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。

1.1.1德国IGOR工艺德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。

该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。

该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其处理能力增大,操作简单;②循环油基本不含固体并且基本排除了沥青烯;③煤的直接液化与循环溶剂加氢和液化油提质加工串联在一套高压系统中,油收率增加,产品质量提高,过程氢耗降低。

1.1.2美国HTI工艺HTI工艺是在H-Coal工艺和CTSI两工艺基础上,采用悬浮床反应器和胶体铁基催化剂的一种煤加氢液化工艺。

该工艺的主要技术特征有:①采用胶态高分散纳米尺度的Fe催化剂,降低了催化剂成本,提高了活性;②采用外循环全返混三相鼓泡床反应器,增强了反应器处理能力;③对液化粗油进行在线加氢精制,进一步提高了馏分油的品质;④反应条件较为温和,温度440~450℃,压力为17MPa,产率高,氢耗低;⑤固液分离采用超临界溶剂萃取脱灰,油收率提高5%。

1.1.3日本NEDOL工艺NEDOL工艺是日本在EDS工艺的基础上开发出来的烟煤液化工艺,由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等四个主要单元组成,用预加氢过的中、重质油溶剂将煤、催化剂制成煤浆,和氢气一起预热后在一定的温度、压力下使之反应液化,然后把得到的液化粗油进行分离,精制、改性。

大部分的中质油和全部重质油馏分经加氢后被循环作为供氢溶剂,供氢性能明显优于EDS工艺。

其工艺特点为:①反应温度430~465℃,反应压力17~19 MPa;②催化剂采用合成硫化铁或天然黄铁矿;③固液分离采用减压蒸馏;④采用循环溶剂单独加氢,提高了溶剂的供氢能力。

它集聚了“直接加氢法”、“溶剂萃取法”和“溶剂分解法”这三种烟煤液化法的优点,适用于从次烟煤至煤化度低的烟煤等广泛煤种。

1.1.4俄罗斯低压加氢液化工艺此工艺是俄罗斯在20世纪70~80年代针对本国煤质特点,开发的直接加氢液化工艺。

其工艺特点为:使用加氢活性很高的Mo催化剂,并采用离心溶剂循环和焚烧进行回收;液化反应气压力低,褐煤加氢液化压力为6. 0 MPa,烟煤加氢液化压力为10. 0 MPa,有利于降低工程投资和运行成本;采用瞬间涡流仓煤干燥技术,可以增加原料煤的比表而积和孔溶剂,减少煤颗粒粒度,利于加氢液化反应;采用半离线固定床催化反应器对液化粗油加氢精制,便于操作。

2.1煤直接液化催化剂研究进展催化剂是煤直接液化过程的核心技术,在煤液化过程中起着非常重要的作用。

优良的催化剂可以降低煤液化温度,减少副反应并降低能耗,提高氢转移效率,增加液体产物的收率。

到目前为比,被研究的催化剂主要有廉价的铁基催化剂、稍贵的钼基催化剂、利用金属间协同作用的复合催化剂以及一些新型的改性催化剂。

2.1.1铁基催化剂铁基催化剂的研究一般可分为两类:一类是天然矿物或矿渣催化剂;另一类是发展超细微粒的铁基催化剂。

铁基催化剂的活性较低,一般和硫一起使用,可以产生较好的液化效果。

虽然铁催化剂在加氢裂解活性上不如Co和Mo等催化剂,但由于经济和环保上的优势,并且煤灰分中也含有铁元素,因此,开发高效铁基催化剂成为近年来研究的重点。

Taka[6]采用配有红外聚焦炉的速热高压反应釜制备了高分散的Fe1-xS液化催化剂,考察该催化剂对Yallourn煤的直接液化效果,并和传统的黄铁矿催化剂的性能进行了比较。

结果发现,在红外聚焦炉的快速加作用下y-Fe00H转化为磁黄铁矿,大大提高了煤转化率和产品产率。

2.1.2钼基催化剂1925年人们开始使用过度金属钼及其钼酸盐催化剂用于煤的加氢液化研究,但对煤液化取得重要进展的是钼基硫化物催化剂的应用,它对煤液化的催化活性优于铁基催化剂,特别是对煤大分子结构中的Car—Cal、Car—O间的化学键断裂具有一定的选择性而备受研究者的关注。

艾军等[7]利用间歇式高压釜,采用钼系催化剂钼酸铵、三氧化钼和二硫化钼对神东煤进行煤直接液化性能的研究。

研究表明,钼的添加量为0.1%时,钼酸铵的效果最好,转化率和油产率最高,分别为82. 14%和39. 47%。

2.1.3复合催化剂由于铁基催化剂的活性相对较低,而昂贵的钼镍催化剂又很难投入实际应用,因此人们开始将铁基催化剂和昂贵的钼、镍等复合,希望提高铁基催化剂活性的同时,减少贵金属的用量。

Priyanto等[8]使用原位担载的方法制备了一系列的Fe、Mo、Ni三金属催化剂。

在反应温度为450 ℃,氢压为15 MPa,四氢化萘为溶剂的条件下,三金属FeMoNi催化剂的活性要明显好于MoNi催化剂,油产率高达770%。

三种金属的添加次序对油产率有轻微的影响。

同时,他们将液化残渣回收并作为催化剂使用,结果显示此催化剂依然有较高的活性可以反复使用,从而降低催化剂的用量。

王勇等[9]研制了一种FeNi复合催化剂,考察了催化剂对神东煤直接液化的催化活性,主要考察了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的“863”催化剂进行对比。

研究结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加,中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低。

与"863”铁基催化剂相比,小于74 μm的复合催化剂的催化效果要优于后者。

该催化剂中含有一定的镍,镍的强加氢作用使得煤液化反应转化率增加,油产率增加。

2煤间接液化煤间接液化是指将煤炭转化为汽油、柴油、煤油、燃料油、液化石油气和其它化学品等液体产品的工艺过程,主要由三大部分组成,即煤制合成气(包括造气和净化)、合成气费托合成以及合成油品加工精制。

其中费托合成单元是其核心部分。

2.1煤间接液化技术的发展历程在20世纪20年代,德国就开始了煤间接液化技术的研究,并于1936年首先建成工业规模的合成油厂。

到1955年,世界上已有18个合成油工厂,总生产能力达到100万吨/年。

之后,由于石油工业的兴起和发展,致使大部分费托合成油装置关闭停运。

目前,国外典型的工业化煤间接液化技术有南非Sasol的费托合成技术、荷兰Shell公司的SMDS技术和Mobil公司的MTG合成技术等。

此外还有一些先进的合成技术,如丹麦Topse公司的TIGAS技术、美国Mobil公司的STG技术、Exxon 公司的AGC-21技术、Syntroleum公司的Syntroleum技术等,但均未商业化[10]。

我国在20世纪50~60年代初曾在锦州运行过规模为5万吨/年的煤间接液化工厂。

2008年山西潞安集团年产16万吨煤基合成油示范项目以中国科学院山西煤炭化学研究所自主研发的煤基液体燃料合成浆态床工业化技术为核心技术正式出油,标志着中国煤制油产业化试验取得了阶段性成果和重大突破。

2009 年,我国首套煤间接液化工业化示范装置在内蒙古伊泰集团正式投产。

据估计,到2020 年全国将形成煤间接液化装置5000 万吨/年的产能。

2.2煤间接液化技术的经济性与工业应用前景2.2.1煤间接液化技术的经济性影响煤间接液化技术经济性的主要因素有:①整个装置的投资规模和生产规模;②煤间接液化的技术选择;③间接液化使用的催化剂,一般不能再生,且价格贵,因此除设法减少损耗和延长寿命外,应在催化剂再生技术上争取突破;④采用先进固定流化床和浆态床工艺,可提高主产品的产率和选择性,增产高附加值化学品,给企业带来丰厚的收益;⑤建厂地理位置,项目的建设周期,原料煤的价格和品质,原油、成品油价格等;⑥整个煤液化工艺流程的集成优化程度等。

煤制油是一个具有规模经济性的大型综合性产业,要取得明显的经济效益,煤制油装置规模应在100万吨/年以上,装置规模越大,吨油投资越少,物料和能量利用率越高,其综合效益越好。

在技术选择方面,对煤间接液化制油项目的经济性有重要影响的是:煤制合成气技术、合成油技术和煤基油加工精制技术。

煤制合成气装置占总投资的65%左右,费托合成装置约占20%,油品精制装置占15%。

由此可见,煤制合成气装置是制约煤制油装置投资和回报期的主要因素。

国内采用Texaco和Lurgi气化炉的煤气化技术均有商业装置运行并已基本实现国产化。

费托合成油技术的选择也很重要,主要需比较国外引进技术与国内自主研发技术。

国外技术优点是成熟可靠,缺点是引进费用高,使项目的总体造价可能大幅度上升;相反,采用国内自主研发技术缺点是工程放大存在一定风险,放大倍数越大,风险就越大,优点是软件费用低,项目总体造价可以大幅降低。

原料和动力的消耗是构成煤间接液化制油项目中可变成本的主要组成部分,对项目的经济性有重要影响,煤耗相对水耗和电价的影响更大。

相关主题