当前位置:文档之家› 变频器课程设计

变频器课程设计

目录一、变频器的概述............................................................................................ 错误!未定义书签。

1.1变频器的发展前景 (1)1.2变频器的组成与分类 (1)1.3变频器的基本原理 (2)二、变频器的设计要求 (3)三、变频器的主要参数的选取和设计 (3)3.1交流侧阻容吸收环节R、C的选择 (3)3.2整流二极管的选择 (4)3.3平滑滤波电容C’的选择 (4)3.4IGBT的选择 (6)四、变频器主电路的设计 (6)4.1整流电路和上电缓冲电路 (7)4.2逆变电路 (7)4.3驱动电路 (8)4.4开关电源电路 (9)五、变频器控制电路的设计 (10)5.1保护采样电路 (10)5.2微机处理芯片电路 (10)5.3变频器的控制方式选择 (11)六、个人小结 (16)七、参考文献............................................................................................................................ (17)一、变频器的概述1.1变频器的发展前景变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。

变频器是由整流电路、滤波电路、逆变电路组成。

其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。

这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。

1.2变频器的组成与分类电压型变频器主电路包括:整流电路、中间滤波电路、限流电路、逆变电路、控制电路组成。

变频器总体分为:“交-交变频器”和“交-直-交变频器”两种。

还可以分为电压型或者电流型变频器。

交-交变频器在结构上没有明显的中间直流环节(或者叫“中间直流储能环节”、或“中间滤波环节”),来自电网的交流电被直接变换为电压、频率均可调的交流电,所以称为直接式变频器。

交-直-交变频器有明显的中间直流环节,工作时,首先把来自电网的交流电变换为直流电,经过中间直流环节之后,再通过逆变器变换为电压、频率均可调的交流电,故又称为间接式变频器。

所以,深入了解交流传动与控制技术的走向,对我们的学习工作具有十分积极的意义。

1.3变频器的基本原理变频器的工作原理是通过控制电路来控制主电路,主电路中的整流器将交流电转变为直流电,直流中间电路将直流电进行平滑滤波,逆变器最后将直流电再转换为所需频率和电压的交流电,部分变频器还会在电路内加入CPU等部件,来进行必要的转矩运算。

图1 交-直-交变频器的主电路二、变频器的设计要求设计一款1KW的简易变频器的全套硬件电路。

1.输入三相220V电压。

2.功能基本达到要求,接近市面,可以使用。

3.主电路包括:整流电路、上电缓冲电路、逆变电路、驱动电路、开关电源电路。

4. 控制电路包括:母线电压采样电路、三相电流采样电路、过压过流保护电路、数字量输入输出电路、模拟量输入电路、MCU 等。

三、变频器的主要参数的选取和设计在变频器主电路的设计中,主要包括电源侧阻容吸收电路中R、C 的选择,三相整流电路器件的选择,中间滤波电容的选择,以及IGBT 的电压、电流定额值的选择。

3.1交流侧阻容吸收环节R、C的选择阻容吸收电路中,C的作用是防止变压器操作过电压和浪涌过电压,R的作用是防止电容和变压器漏抗产生谐振。

电源变压器为Y接法,阻容吸收环节采用∆接法。

电容容量C按下式计算:。

式中,i0%是变压器励磁电流百分数;S是变压器每相平均计算容量(VA);U2是变压器次级相电压有效值(V)。

电容C的耐压计算:。

阻尼电阻R的计算:。

式中,UK%是变压器短路比,一般UK%=5~10。

电阻器R的功率计算:。

式中,k1=3(对三相桥式电路);k2=900。

3.2整流二极管的选择整流器输出接滤波电容,稳定工作时流过变压器副边相电流如图2所示。

通过三相整流桥的每个整流二极管的电流波形近似为方波,如图3所示。

图中IM对应于电动机最大负载电流的峰值,也决定了方波的峰值,则流过二极管的电流有效值为:。

图2 变压器副边近似电压图3 整流二极管近似电压故二极管的电流额定值为:。

二极管的耐压:,式中,U2lm—–整流器输入线电压峰值。

3.3平滑滤波电容C’的选择中间滤波环节的电解电容C’有两个作用:一是对整流电路的输出电压滤波,尽可能保持其输出直流电压为恒定值;二是吸收来自逆变电路由元件换向引起的续流能量和电动机在制动过程中回馈的能量,防止逆变器过电压损坏IGBT。

考虑电解电容用作滤波时,C’和负载的等效电阻的乘积(时间常数)应远远大于三相整流桥输出电压的脉动周期T=0.0033s,则:。

取负载等效电阻RF=0.5Ω。

考虑将C’用作吸收异步电动机的回馈能量时,其容量只能按能量关系来近似估计。

当异步电动机突然停车和减速制动时,电容两端将产生“泵升”电压,为保护IGBT不致损坏,一般尽量选取大电容值,形成“水池”以使泵升电压不致太高。

另外,逆变器一般要有泵升电压限制电路。

电动机轴上的机械储能:。

漏感的储能:。

电容上的初始电压为u0,电容的储能:。

u1为能量回馈后引起的电容电压升高值。

假定能量回馈时不计其他损耗,电动机骤停时,机械储能与漏感储能之和等于电容上的储能,即设定过压系数K=u1/u0(K>1),则若限定K=1.3,即允许电容上泵升电压升高30%,则式(4-28)表明,当电压泵升值一定时,负载侧储能越大,滤波电容的容量也越大。

而当储能一定时,泵升电压值越低,K越小,所需的电容量也就越大。

3.4IGBT的选择IGBT模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品;封装后的IGBT模块直接应用于变频器、UPS不间断电源等设备上;IGBT 模块具有节能、安装维修方便、散热稳定等特点;当前市场上销售的多为此类模块化产品,一般所说的IGBT也指IGBT模块;随着节能环保等理念的推进,此类产品在市场上将越来越多见;(1)要根据负载的最严重情况选择IGBT,如要适当考虑异步电动机的启动电流,要考虑交流电流的峰值。

因此,通过IGBT的集电极电流(2)要考虑IGBT的β是受集电极电流IC的增加而降低的,IC 越大,β越小。

(3)IGBT的耐压UCEO至少应为实际承担的最大峰值电压的1.2倍以上,即四、变频器主电路的设计变频器主电路包括:整流电路、上电缓冲电路、逆变电路、驱动电路、开关电源电路;4.1整流电路和上电缓冲电路整流电路和上电缓冲电路如图5所示,采用的是电容滤波的三相桥式不可控整流电路。

基本原理是:该电路中当某一对二极管导通时输出直流电压等于交流侧线电压中最大的一个,该线电压向电容共电,也向负载供电。

当没有二极管导通时,由电容向负载供电,输出电压按指数规律下降。

上电缓冲电路由充电电阻R1和继电器S1构成,经过三相整流桥整流后的六脉波300HZ的脉动直流电压先经过充电电阻R1对模块外接电容进行充电,等电容充电到一定的幅值时,CPU 输出一个充电继电器的闭合指令,继电器S1接通,将R1短接,变频器随后才进入待机状态。

图5 整流电路和上电缓冲电路4.2逆变电路逆变电路如图6所示,从电路结构上看三相桥式PWM变频电路只能选用双极性控制方式,其工作原理如下:三相调制信号URU、URV 和URW为相位依次相差120°的正弦波,而三相载波信号是共用一个正负方向变化的三角形波UC。

UVW相自关断开关器件的控制方法相同,以U相为例:在URU>UC的各区间,给上桥臂IGBTV1以导通驱动信号,而给下臂V4以关断信号,U相输出电压相对直流电压UD中性点为UD一半。

在URU<UC的各区间,给V1以关断信号,V4为导通信号,输出电压为UD一半。

电路中六个二极管是为负载换流过程提供续流回路,其他两相的控制原理与U相相同。

图6 逆变电路4.3驱动电路本次变频器的驱动电路利用PC923芯片和PC929芯片分别来驱动上下臂,PC923管脚图如图8所示,PC929管脚图如图9所示。

PC923内部电路为一只光耦合器,为互补电压跟随器输出,有400mA的电流输出能力,完全可以独立驱动小功率IGBT模块而无需外置放大器。

图8 PC923的管脚图PC923的引脚功能;1、4脚为空脚;2、3脚为信号输入端,2脚内接光耦合器发光二极管的阳极,3脚内接发光二极管的阴极;8、7脚为正负电源供电端,8、5脚短接以使内部输出和控制回路共用正电源,典型应用值为22-24V;6脚为信号输出端,内接互补电压跟随器的输出中点。

PC929内部除一路光耦合器外,另有IGBT导通管压降检测电路和SC信号输出电路、SC故障自锁电路,对IGBT具有快速保护功能。

图9 PC929管脚图PC929引脚功能:1、2脚内部已短接,2、3脚为信号输入端,2脚内接光耦合器发光二极管的阳极,4、5、6、7为空脚;8为模块故障信号输出脚,内部晶体管射极接负供电,基极受故障信号检测电路所控制;9脚为模块故障信号检测输入脚;10、14脚为负电源供电脚;12、13脚为正电源供电脚;11脚为驱动脉冲输出脚。

上下各有三个驱动臂,如图10所示:图10 驱动电路整体图以上臂驱动电路为例,经R18、D16、C5稳压和滤波,变为+15V 和﹣7.5V正负电源,Z4的负极为零电位点,引出至逆变模块中U相上臂IGBT的发射极;从CPU来的激励脉冲信号,经R15输入到U6的2、3脚之间。

在正向脉冲到来时,PC923内部光耦合器开通,U6的6脚输出为﹢15V的驱动电压,经R15送入逆变模块中U相上臂IGBT 栅极,使其快速开通;在无脉冲或负向脉冲期间,U6的6脚输出电压幅值为﹣7.5V的截止负压,使所驱动的IGBT迅速截止和维持截止状态。

相关主题