当前位置:文档之家› 燃烧热的测定

燃烧热的测定

题目:燃烧热的测定学院名称:化学与环境工程学院专业:化学工程与工艺班级:14化工2学号:***********名:**指导老师:***二〇一六年十一月目录一目的要求、实验原理·········3~4页二仪器试剂、实验步骤·········5~6页三数据处理、结果讨论·········6~9页四其他·········9~10页燃烧热的测定关键词:燃烧热、雷诺温度校正图一目的要求1、掌握燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别及相互关系;2、熟悉热量计中主要部件的原理和作用,掌握氧弹热量计的实验技术;3、用氧弹热量计测定苯甲酸和蔗糖的燃烧热;4、学会雷诺图解法校正温度改变值。

二基本原理1、燃烧与量热根据热化学的定义,1mol物质完全氧化时的反应热称为燃烧热。

所谓完全氧化,对燃烧产物有明确规定。

如有机化合物中的碳氧化成一氧化碳不能认为是完全氧化,只有氧化成二氧化碳才是完全氧化。

燃烧热的测定,除了有其实际应用价值外,还可以用于求算化合物的生成热、键能等。

量热法是热力学的一种基本实验方法。

在恒容或恒压条件下可以分别测得恒容燃烧热Qv和恒压燃烧热Qp。

由热力学第一定律可知,Qv等于体积内能变化ΔU;Qp等于其焓变ΔH。

若参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:ΔH=ΔU+Δ(PV)Qp=Qv+ΔnRT式中Δn为反应前后反应物和生成物中气体的物质的量之差;R为摩尔气体常数;T为反应时的热力学温度。

热量计的种类很多,本实验所用的氧弹热量计是一种环境恒温式的热量计。

氧弹热量计测量装置如图1所示,图2是氧弹的剖面图。

图1 氧弹热量计测量装置示意图图2 氧弹剖面图2、氧弹热量计氧弹热量计的基本原理是能量守恒定律。

样品完全燃烧后所释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高,则测量介质在燃烧前后体系温度的变化值,就可求算该样品的恒容燃烧热。

其关系式如下:-m样Qv/M-l·Ql=(m水C水+C计)ΔT式中m样和M分别为样品的质量和摩尔质量;Qv为样品的恒容燃烧热;l和Ql 是引燃用铁丝的长度和单位长度燃烧热;m水和C水是以水作为测量介质时,水的质量和比热容;C计称为热量计的水当量,即除水外,热量计升高1℃所需的热量;ΔT为样品燃烧前后水温的变化值。

为了保证样品完全燃烧,氧弹中须充以高压氧气或其他氧化剂。

因此氧弹应有很好的密封性能,耐高压且耐腐蚀。

氧弹应放在一个与室温一致的恒温套壳中。

盛水桶与套壳之间有一个高度抛光的挡板,以减少热辐射和空气的对流。

3、雷诺温度校正图实际上,热量计与周围环境的热交换无法避免,它对温度测量值的影响可用雷诺温度校正图校正。

具体方法为:称取适量待测物质,估计燃烧后的可使水温上升1.5~2.0℃。

预先调解水温使其低于室温1.0℃左右。

按操作步骤进行测定,将燃烧前后观察所得的一系列水温和时间关系作图。

可得如图3所示的曲线。

图中b点意味着燃烧开始,热传入介质;c点为观察到的最高温度值;相当于室温的T点作水平线交曲线O点,过O点作垂线AB,再将ab线和dc线分别延长交AB 线于E、F两点,其间的温度差值即为经过校正的ΔT。

图中EE’为开始燃烧到体系温度上升至室温这段时间Δt1内,由环境辐射和搅拌引进的能量所造成的升温,故应予以扣除。

FF’是由温度升高到最高点c点这一段时间Δt2内,热量计向环境的热漏造成的温度降低,计算时必须考虑在内。

故可认为,EF两点的差值较客观地表示了样品燃烧引起的升温数值。

在某些情况下,热量计的绝热性能良好,热漏很小,而搅拌器功率较大,不断引进的能量使得曲线不出现极高温度点,如图4所示。

其校正方法与前述相似。

本实验采用数字式精密温差测量仪来测量温度差。

图3 绝热稍差情况下的雷诺温度校正图图4 绝热良好情况下的雷诺温度校正图三仪器试剂氧弹热量计1套万用表1个数字式精密温度差测量仪1台案秤(5kg)1台氧气钢瓶1只温度计(0~50℃)1支氧气减压阀1只小台钟1只压片机1台烧杯(1000ml)1只电炉(500W)1个药物天平1台塑料桶1个引燃专用铁丝直尺1把苯甲酸(分析纯)剪刀1把萘(分析纯)四实验步骤一测量热量计的水当量1、样品制作用药物天平称取大约0.9g左右的苯甲酸,在压片机上稍用力压成圆片。

用镊子将样品在干净的称量纸上轻击二、三次,出去表面粉末后在用分析天平准确称量。

2、装样并充氧气拧开氧弹盖,将氧弹内壁擦干净,特别是电极下端的不锈钢丝更应擦干净。

搁上金属小器皿,小心将样品片放置在小器皿中部。

剪取18cm长的引燃铁丝,在直径约3mm的铁钉上,将引燃铁丝的中段绕成螺旋形约5~6圈。

将螺旋部分紧贴在样品片的表面,两端如图2所示固定在电极上。

注意引燃铁丝不能与金属器皿想接触。

用万用电表检查两电极间电阻值,一般应不大于20Ω。

紧旋氧弹盖,卸下进气管口的螺栓,换接上导气管接头。

导气管的另外一端与氧气钢瓶上的减压阀连接。

打开钢瓶阀门,向氧弹中充入2MPa。

3、测量用案秤准确称取已被调节到低于室温1.0℃的自来水3kg于盛水桶内。

将氧弹放入水桶中央,装好搅拌马达,把氧弹两电极用导线与点火变压器相连接,盖上盖子后,先将数字式精密温差测量仪的探头插入恒温水夹套中测出环境温度(即雷诺温度校正图中的O点),然后将其插入系统。

开动搅拌马达,待温度上升后,每隔1min读取一次温度(准确读至0.001℃)。

10~12min后,按下变压器上电键通电4~5s点火。

自按下电键后,温度读数改为每隔15s一次,直到两次读数差值小于0.005℃,读数间隔恢复为1min一次,继续10~12min后方可停止实验。

关闭电源后,取出数字式精密温差测量仪的探头,再取出氧弹,打开氧弹出气口放出余气。

旋开氧弹盖,检查样品燃烧是否完全。

氧弹中应没有明显的燃烧残渣。

若发现黑色残渣,则应重新实验。

测量未燃烧的铁丝长度,并计算实际燃烧掉的铁丝长度。

最后擦干氧弹和盛水桶。

样品点燃及燃烧完全与否,是本实验最重要的一步。

二蔗糖的燃烧热测定称取0.9g左右萘,按上述方法进行测定。

五数据处理1.苯甲酸的燃烧热为-26460J·g,引燃铁丝的燃烧热值为-2.9J/cm。

2.作苯甲酸和萘燃烧的雷诺温度校正图,由ΔT计算水当量的萘的恒容燃烧热Qv,并计算其恒压燃烧热Qp。

3.根据所用仪器的精密,正确表示测量结果,并指出最大测量误差所在。

4.文献值原始数据记录其中Qm=-6695J/gQv=ΔH -ΔnRT=-3226.9-(7-7.5)X0.5812÷122.12X8.314X298.15 =-3221.01KJ/mol 由雷诺温度校正图得ΔT=0.931℃ 代入可得 计水水C C m +=1.65x10^4J/℃ 214.14^1065.16695-x 0041.018.1286779.0⨯⨯=--)(Qv 由图可得: T1=0.029 T2=1.243 ΔT=0.931℃解得Qv=-3782.4KJ/molQp=Qv+ΔnRT=-3782.4+0.6779÷128.18×(10-12)×8.314×298.15=-3808.6KJ/mol六实验注意事项1.注意氧气钢瓶的使用2.铁丝要连紧电极,与药品接触紧凑以让药品完全燃烧,若实验结束后氧弹内存有残渣则需重新实验七 结果分析与讨论1.引燃铁丝与药品接触方式会造成实验结果的误差;2.样品完全燃烧的程度是实验成功与否的关键,若氧弹中还剩余黑色残渣,则说明样品未完全燃烧;3.实验仪器自身存在不可避免的系统误差;4.对本实验进行如下改进可降低误差对实验结果的影响:改变燃烧丝在片状药品中的状态和位置 ,改变药片在氧弹内坩埚中的状态 ,改变氧弹内氧气的压力值和改变点火电流控制转钮的操作方式。

5.本实验是用数字式精密温差测量仪测量温度,也可以用热电堆或其他热敏元件代替,或用自动平衡记录仪自动记录温度及其变化情况。

八 参考文献1 Shoemaker D P, Garland C W, Nibler J W. Experimnents in Physical Chemistry. 5th edn. New York: McGraw -Hill Book Company,1989)(3)(7)(215)(222267l O H g CO g O s O H C +→+T C C Q Q M m ∆+=-⋅)(计水水铁丝样m m -m v 214.14^1065.16695-x 0041.018.1286779.0⨯⨯=--)(Qv2 北京大学化学系物理化学教研室编. 物理化学实验. 第三版. 北京:北京大学出版社,1995.043 Weast R C. CRC Handbook of Chemistry and Physics. Boca Raton, Florda: CRC Press, Inc, 1985-1986.2724 印永嘉主编.物理化学简明手册.北京:高等教育出版社,1980.805 朱京,陈卫,金贤德,蔡显鄂.液体燃烧热和苯共振能的测定.化学通报.1984(3):50。

相关主题