从汉诺塔问题看递推关系在实际问题中的应用姓名:孙瑞 学号:200640501218 指导老师:马玉田摘要:本文主要介绍了递推关系在实际中的应用,对几个实际问题的分析,让我们清楚的看到递推关系在解决实际问的强大作用.关键词:数列 递推关系 汉诺塔 九连环 蛛网模型引言: 递推关系在实际问题中有着广泛的应用.由连续变量可以建立微分方程模型,离散变量可以建立递推关系模型. 经过分析可知,常、偏微分方程除非在极其特殊的情况下,否则一般不存在解析解,所以讨论起来非常麻烦,比如最基本的平衡点的稳定性,往往只能得到局部稳定性,全局稳定性很难得到,而递推关系模型可以达到全局的效果,另外,由递推关系获得的结果又可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。
而在实际中,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个递推关系模型。
递推关系模型有着非常广泛的实际应用背景,我们的前人建立了许多著名的模型,如生态模型,传染病模型,经济模型(如蛛网模型),人口控制模型(如著名的马尔萨斯人口控制模型)等等.定义:设012,,,,n a a a a 是一个数列,把该数列中n a 与它的前面几个(01)i a i n ≤≤-关联起来构成的方程,称为一个递推关系,即(,,)n j k a f a a =(0,1)j k n ≤≤-.下面让我们看看递推关系在汉诺塔问题中的应用.引例:汉诺塔(又称河内塔)问题是印度的一个古老的传说。
开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。
面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动汉诺塔问题:它是由三根固定的柱子ABC 和不同尺寸的n 个圆盘组成.开始时,这些个大小不同的圆盘依其半径大小依次套在A 柱上,使大圆盘在底下.游戏的规则是:每次的圆盘从一根柱子移到另一根柱子上,但是不允许这个圆盘放在比它小的圆盘上面.游戏的目标是把所有的圆盘从按照大小的次序从A 柱都移到C 根柱子上,可以利用中间的B 柱子,在移动过程中药始终将最大的圆盘放在最下面.令n H 表示解n 个圆盘的汉诺塔游戏所需要的移动次数,建立关于序列{n H }递推关系 解 开始时n 个圆盘在A 柱上,按照游戏规则用1n H -次移动将上面的1n -个圆盘移到C 柱子上,在这些移动中最大圆盘不动.然后,用1次移动将最大圆盘移到B 柱子上.再用1n H -次移动将C 柱子上的1n -个圆盘移到B 柱子上并且放到最大圆盘上面,于是,得到所求递推关系.121n n H H -=+和初始条件是11H =.因为根据游戏规则,一个圆盘可用1次移动从A 柱子放到B 柱子上.为求解上述递推关系,对该问题首先用构造方法导出其解公式如下:1232233123112212(21)12(21)21222122221222121n n n n n n n n n n n H H H H H H ---------=+=++=++=+++=+++++=++++=-其中11H =, 21nn H =-确是递推关系121n n H H -=+的解.现在我们再回头看看古印度的那个问题,勃拉玛要求移动64个圆盘,带入我们所求的关系式即是64642118446744073709551615H =-=,面对这个天文数字,庙中僧侣要想移动这64个圆盘几乎是不可能的.从汉诺塔问题我们看到递推关系在解决实际问题中的巨大作用,,它在众多领域里有着广泛的应用,由此我们看看由汉诺塔问题所引出的一些实际问题.(1)九连环方程问题九连环是中国古代在民间流传的一种玩具,它是由9个环,9个直杆,一个条形框柄和一个平板组成,.每一个环都有一根杆相连,又顺序穿入后一个环,再连在条形横板上,从而构成一个整体,与其相适应,大小相当的一个条形框柄,可以将9个环穿套在上下框柄.只有它前面的换单独在框柄上面.只是穿套不可能一次性完成,有着严格的规律性和特别的要求.第一个环可以独立,自由地上或下条形框柄,而其后的各环要上或下框柄都受其前面的连杆和环的限制,任何一个环要独立,自由地上下框柄只要它前面的换单独在框柄上就能做到.现在可以假设前n 个环已经全部上到框柄上,需要移动环的次数为S (1,2,9)n n = .这样,将前1n -个环都上到框柄上时,需要移动1S n -次,反之将前2n -个环下到框柄下.移动次数和之前的情形一样为2S n -,此时只有第1n -个环单独在框柄上,可将第n 个环上到框柄上,移动一次,再将前2n -环上到框柄上,移动次数为2S n -,至此,前面n 个环都上到框柄上,总的移动次数为12212S S 1S S 2S 1n n n n n -----+++=++,按假设,它等于S n ,所以有12S S 2S 1n n n --=++,补充定义0S 0=显然1S 1=(1,2,9)n = 这就是九连环的基本方程.利用它可以计算出2S 2=,并递推地求出S n .直接求解可将两边都加上和减去1S 1n -+,得:211S S 12(S S 1)2n n n n n ---++=++=和12S -S 12S n n n ---=,求平均得: 12S S 2n n n --=+,递推下去,有 +1+2324S S 2S S 2i i i n n n ---=+++=+ ,累加得111S S (22)3i n i n ++=+-,其中i 与n 同奇偶性,并且1i =或2.为求S i 和+12i ,可设S cos i u v n π+=,则有121u v u v +=-⎧⎨+=⎩, 解方程组,得 2,3u v ==, 所以1S (3cos )2i n π=+设+12cos i p q n π⋅+=,则有4181p q p q +=-⎧⎨+=⎩,解方程组得12p =,3q =-.所以有+122(3cos )i n π=+带入解表达式+111S S (22)3i n n i +=+-,有111S (3cos )[22(3cos )]23n n n n ππ+=++-+,整理,得1111S 2cos 326n n n π+=⨯--,这即是九连环方程的解.如果令1S S H n n n -+=表示第n 个环单独在框柄上要移动环的次数,代人基本方程,消去S 有1H 2H 1n n -=+,这可以视为九连环第二方程,也就是我们前面所提及的汉诺塔方程(2)递推关系在几何上的应用例1 一个人从坐标原点0(0,0)A 出发,通过点(1,0),1(1,1)A 然后再以折线通过整数坐标的点11122223(1,1),(2,1),(2,1),(2,2),(2,2),(2,2),(2,3),(3,3)B C D A B C D A ------- 试求此人沿着折线到点(,)m n 时所走的路程(0)m n >>.解:用0a 表示这个人由原点0(0,0)A 走到1(1,1)A 的路程, k a 表示此人由点(,)k A k k 走到点1(1,1)k A k k +++的路程,则当2k ≥时,由1(1,1)k A k k ---走到(,)k A k k 时经过的路程是1111(1,1)(1,1)(1,1)(,1)(,).k k k k k A k k B k k C k k D k k A k k ------→-+-→-+-+→-+→所以,得11111111(22)(22)(21)(21)86k k k k k k k k ka A B B C C D D A k k k k k --------=+++=-+-+-+-=-.因为此公式当1k=时得02a =,故数列{}n a 的通项公式186k a k -=-(1,2,3,)k = .当此人从 0(0,0)A 到(,)m A m m 时,走的路程是10m kk a-=∑,即1011112P (86)86(1)86422m mmk k k k a k k mm m m m m --====-=-+=⋅-=-∑∑∑.由点(,)m n 到点(,)m A m n 的路程为()m n -,故此人由原点0(0,0)A 走到点(,)m n 的路程是2242()43.m m m n m m n ---=-+在求图形中的无限个图形的面积或无限条线段长的和时,首先要确定这些面积或线段长所组成的数列.为此,要求出第一个图形的面积或第一条线段的长度,以及前后两个图形面积或线段之间的递推关系,然后再用有关的公式求和.例2 如图所示,在直角ABC ∆中, ABC=90,A=.θ︒∠∠自B 点出发,作1BD AC ⊥于1D ,作12D D AB ⊥于2D ,作23D D AC ⊥于3D , 依此做下去,得到无穷数列11223CB,BD ,D D ,D D ,(1) 求证: 11223CB+BD +D D +D D +>AB+AC . (2) 求证: 2222211223CB +BD +D D +D D +=AC .(3) 为使11223ABD,AD D ,AD D ,∆∆∆ 的面积之和不大于ABC ∆的面积,求θ的取值范围.解 (1)由已知条件可得1212BD BC cos ,D D BD cos BC cos ,θθθ=⋅=⋅=⋅在n n+1n+2Rt D D D ∆中可知: n+1n+2n n+1D D =D D cos θ (n=1,2,3,) .由上式联立可知,数列11223CB,BD ,D D ,D D , 是首项为CB ,公比为cos θ的等比数列,又因而它又是无穷递缩等比数列,故11223CBCB,BD ,D D ,D D ,1-cos θ=,CB (1cos )CBAB+AC=CBctg +sin sin θθθθ+⋅=, 从而CB (1cos )CB sin (1sin )CB 1cos sin (1cos )sin θθθθθθθ+⋅--=⋅--θ是锐角,故上式的值为正值,因此11223CB+BD +D D +D D +>AB+AC(2) 显然,数列222211223CB ,BD ,D D ,D D 是首项为2CB ,公比为2cos θ的无穷递缩等比数列,因此,222222112232222CB CB CB +BD +D D +D D +==1cos sin CB ==AC sin θθθ-⎛⎫ ⎪⎝⎭(3)1ABD 11112212311S =BD AD =BD (BD ctg )2211=BD ctg (BC cos )ctg 22BC cos ,2sin θθθθθθ∆⋅⋅⋅⋅=⋅= 又1ABD ∆∽12AD D ∆,于是1122ABD 2122AD D 1S D D ==cos S BD θ∆∆, ∴12ABD 2S(cos )ABD θ∆=∆.因为n n+1AD D ∆与n+1n+2AD D ∆相似,于是n+1n+2n n+12AD D 22n+1n+2n+1n+22AD D n n+1n n+1S D D D D ==()=cos S D D D D θ∆∆, ∴ n+1n+2n n+122AD D AD D S(cos )S θ∆∆=.由上式可知,数列11223ABD AD D AD D S ,S ,S ,∆∆∆ 是首项为23BC cos 2sin θθ,公比为2cos θ的无穷递缩等比数列,故1122323ABD AD D AD D 223232BC cos 2sin S +S +S 1-cos BC cos BC (ctg ),2sin 2θθθθθθ∆∆∆+=== 又2ABC 11S =AB BC=BC ctg 22θ∆⋅, 依题意令223BC BC (ctg )ctg 22θθ≤ ,得2tg 1θ≥. 于是在02πθ<<的条件下,得42ππθ≤<,因此,当42ππθ≤<时,11223ABD ,AD D ,AD D ,∆∆∆ 的面积之和不大于ABC ∆的面积.(3)递推关系在概率论中的应用随着科学技术的发展,递推关系在各个领域得到越来越多的应用,本文将介绍递推关系的一个简单的应用,即利用递推关系求概率问题.全概率公式是概率中一个最基本、最常用、最重要的公式.利用全概率公式列出递推关系,然后通过解递推关系求得概率,从而简化了应用全概率公式求解某些问题的复杂繁琐性.下面让我们看两个具体实例:例1 投掷硬币n 次,第一次出现正面的概率为c ,第二次后每次出现与前一次相同的表面的概率为p ,求第n 次出现正面的概率.解 设n A ={第n 次出现正面},则由全概率公式可得:111()()()()()n n n n nA A P A P A P P n P A n+++=+.(1)n n P p P p =+-即1(21)(1)n n P p P p +=-+- 由上述递推关系及初始条件1P c =当1p ≠时,有11[1(21)](21)2n n n p P c p ----=+-111(21)(21)22n n p c p ---=-+-111()(21)22n c p -=--+,当1p =时,有n P c ≡.例2 在每一次试验中,事件A 出现的概率p ,试问n 次独立试验中A 出现偶次的概率多少? 解 设n P 表示n 次独立实验中A 出现偶次的概率,则根据题意可列出关系式1(12)n n P p p P -=+-,用迭代法将其展开可得21222323221211110(12)(12)(12),(12)(12)(12),(12)(12)(12),(12)(12)(12).n n n n n n n n n n p P p p p P p P p p p P p P p p p P p P p p p P ----------=-+--=-+--=-+--=-+-其中,01P =,且上述表示对原方程组进行递推连锁变换,同乘以12p -,然后将上述n 个方程两边相加,约去含1P 至1n P -的各项,则21(12)(12)(12)(12)[1(12)](12)21(12),2n nn nnn P p p p p p p p p p p p pp -=+-+-++-+---=+-+-=(4) 递推关系在物理学中的应用递推关系在工程技术领域的某些方面有重要应用.原因在于递推关系方程满足许多领域的方程形式,而解法又满足n 阶常系数方程的形式.所以物理领域中的问题只要条件满足递推关系方程,一般都可以方便解之.下面以二阶齐次递推关系方程为例,略述其在物理方面的一些应用.例 如图l 所示系统,点0P 保持对地面的恒定电位0V ,试求1231,,,n P P P P - 各点的电位.分析: 根据Kirchhoff 定律:流入电路中任何节点的电流之和等于流出该节点的电流之和.因此在一般点1x P +(图2),可得11x x x i i I ++=+,由VI R =,可得:11212x x x x x V V V V V r r r++++--=+, 整理得 21502x x x V V V ++-+= (1)式(1)在2,3,,(2)x n =- 时成立,就是说在点1P 与1n P -之外的所有点上成立,在点1P 与1n P -,式(1)化为相应条件21052V V V -+= (0V 为已知) (2)22502n n V V ---+=(0n V =) (3) 方程(1)满足递推关系2105()02x E E E V -+=的形式, 故可采用递推关系方程求解,式(1)特征方程为25102M M -+=解得 112M = , 22M = 其全解为 1()22x xx V A B =+将其带入式(2)和(3)得05(4)(2)422A AB B V -+++=, 12125(2)(2)0222n n n n A AB B -----+++=, 求方程得 202221n nA V =- , 02121n B V =--, 所以电压的通解 20221(2)221xx x nV V π=--. 可以验之,在0x =和x n =点均满足上式. (5)市场经济中的蛛网模型经济背景与问题:在自由竞争的市场经济中,商品的价格是由市场上该商品的供应量决定的,供应量越大,价格就越低。