第25卷第4期 硅 酸 盐 通 报 V o.l 25 N o .4 2006年8月 BULLET I N OF THE CH I N ESE CERAM IC SOC I ETY A ugust ,2006 国内外压电陶瓷的新进展及新应用李晓娟,李全禄,谢妙霞,郝淑娟,杨贵考,周九茹,马 晴(陕西师范大学物理学与信息技术学院,西安 710062)摘要:主要综述了近年来国内外压电陶瓷材料的最新进展和最新应用状况,以及为使压电陶瓷材料更充分应用于生产实践中所采取的一系列改性措施,其中包括锆钛酸铅(PZT )压电陶瓷、不含铅的铋层压电陶瓷、钛酸铋钠(BNT )压电陶瓷及钛酸钡(BaT i O 3)压电陶瓷系统。
最后,还简要介绍了压电陶瓷材料未来的发展趋势。
关键词:压电陶瓷材料;新进展;新应用;发展趋势N e w H eadways and N e w App li cati ons of P iezocera m icsatH o m e and AbroadLI X iao -Juan ,LI Quan -Lu ,X I E M iao -X i a ,HA O Shu -Juan ,YA NG Gui -kao ,ZH OU J iu -ru ,MA Q i n g(School of Phys i cs and Infor m ation Technol ogy ,ShaanxiN or m alUn i versit y ,Xi 'an 710062)Abst ract :This paper summ arizes the new headw ay and ne w applicati o n of piezoelectric cera m ic m a terialsat ho m e and abroad in r ecent years ,and a series of i m prove m en ts in order t o m ake t h e m fully applied i nt h e p r oduc tion w ere pr oposed ,i n cluding the p i e zoe lectric cera m ic o f PZT w ith lead ,the l e ad -freepiezoelectric cera m ic w ith bis mu t h layer str uct u r e ,t h e p iezoelectric ce ra m ic of B NT and p iezoelectricce r a m ic Ba T i O 3.I n addition ,ne w deve l o p m ent trends o f p iezoelectric cera m ic we r e in troduced .K ey w ords :piezoe lectric cera m ic m a teria ls ;ne w headw ay ;ne w applica tion ;deve lopm ent tr end基金项目:国家自然科学基金资助项目(10374064);陕西省教育厅专项科研计划资助项目(03J K061).作者简介:李晓娟(1978-),女,硕士.从事压电陶瓷材料及器件研究. 压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应,压电陶瓷除具有压电性外,还具有介电性、弹性等,已被广泛应用于医学成像、声传感器、声换能器、超声马达等[1~3]。
随着现代电子信息技术的飞速发展,对于性能优异的压电陶瓷材料的开发和探索已成为各国研究的热点问题。
目前,在性能改进方面主要采用2种方法[4~6]:一种是掺杂改性,即掺杂某种改性离子;另一种是改进制备工艺。
本文将对国内外压电陶材料的最新研究进展及最新应用情况做一扼要的综述,其中包括含铅压电陶瓷与无铅压电陶瓷系统;并对压电陶瓷材料未来的发展动态进行了展望,目的在于使相关科研与教学人员能注意到该领域新的发展状况及有待解决的问题。
1 压电陶瓷的基本物理性质1.1 介电性及弹性性质压电陶瓷的介电性是反映陶瓷材料对外电场的响应程度,通常用介电常数ε来表示。
在外电场不太大时,电介质对电场的响应可用线性关系P =ε0χE [7]表示,P 为极化强度,ε0为真空介电常数,χ为电极化率,E为外加电场。
不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。
例如,压电陶瓷扬声器等音频102 综合评述硅酸盐通报 第25卷元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。
压电陶瓷的弹性系数是反映陶瓷的形变与作用力之间关系的参数。
压电陶瓷材料同其它弹性体一样,遵循胡克定律[7]:X mn=c mnpq x mnpq,式中c m npq叫做弹性体的弹性硬度常数,X为应力,x为应变。
对于压电体,由于存在压电性,弹性系数的数值与电学边界条件有关。
1.2 压电陶瓷的压电性压电陶瓷最大的特性是具有压电性,包括正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
在外力不太大的情况下,其电荷密度与外力成正比,遵循公式:δ=d T[8]。
其中δ为面电荷密度,d为压电应变常数,T为伸缩应力。
反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心发生相对位移而被极化,由此位移导致电介质发生形变,这种效应称之为逆压电性。
当电场不是很强时形变与外电场呈线性关系,遵循公式:x=d t E[7]。
d t为逆压电应变常数,即d的转置矩阵,E为外加电场,x为应变。
压电效应的强弱反映了晶体的弹性性能与介电性能之间的耦合程度,用机电耦合系数K表示,遵循公式[9]:K=u212u1u2其中u212为压电能,u1为弹性能,u2为介电能。
1.3 压电特性的物理机制[10]我们知道经过极化了的压电陶瓷片的两端会出现束缚电荷,所以在电极表面上吸附了一层来自外界的自由电荷。
如图1所示。
当给陶瓷片施加一外界压力F时,片的两端会出现放电现象,如图2所示。
相反加以拉力会出现充电现象。
这种机械效应转变成电效应的现象属于正压电效应。
图1 陶瓷片内的束缚电荷与电极上的自由电荷示意图F ig.1 Ske tch m ap of bound cha rge i n cera m ics and freecharg e on po le 图2 正压电效应示意图F i g.2 Ske t ch map o f direct p i ezoelectric effect图3 逆压电效应示意图F i g.3 Ske t ch m ap o f converse piezoe lectric e ffect 另外,压电陶瓷具有自发极化的性质,而自发极化可以在外电场的作用下发生转变。
因此当给具有压电性的电介质加上外电场时会发生如图3所示的变化,压电陶瓷会有变形。
然而,压电陶瓷之所以会有变形,是因为当加上与自发极化相同的外电场时,相当于增强了极化强度。
极化强度的增大使压电陶瓷片沿极化方向伸长。
相反,如果加反向电场,则陶瓷片沿极化方向缩短。
这种由于电效应转变成机械效应的现象是逆压电效应。
2 压电陶瓷的性能改进及应用2.1 含铅压电陶瓷低温烧结及性能改进二元系锆钛酸铅Pb(Zr x T i1-x)O3(简称PZT)压电陶瓷的压电性能和温度稳定性以及居里温度等都大大优越于其他陶瓷,更重要的是PZT还可以通过改变组分或变换外界条件使其电物理性能在很大范围内进行 第4期李晓娟等:国内外压电陶瓷的新进展及新应用103调节,如三元系,四元系等,以适应不同需要[11]。
因此很快成为国内外学者研究的主要对象。
以PZT为基压电陶瓷烧结温度一般都比较高,约为1200~1300℃。
然而,氧化铅(PbO)的挥发温度为800℃左右。
这样,在烧结过程中很容易造成氧化铅的挥发,不能保证烧结过程处于铅气氛中,势必影响陶瓷性能[12]。
针对这一点,曾有人提出在最初配料时加过量Pb3O[13]4,然后把样品放在密闭的坩埚内,目的在于保证烧成处于铅的气氛中。
该方法虽然保证了陶瓷的性能,但却忽视了氧化铅是一种易挥发的有毒物质。
Ryn等[14]认为提高升温速率,可以降低氧化铅的挥发。
这种方法不足之处在于:第一,不能完全消灭氧化铅的挥发;第二,未考虑到烧结温度对晶粒尺寸的影响。
因为温度越高、晶粒尺寸越大,在同样的保温条件下,过大的晶粒尺寸将会导致压电性下降。
如果能够从降低烧结温度及升温时间方面进行工艺改进,这样既能减少氧化铅的挥发,又能有效控制晶粒尺寸过分增长,同时又节约了能源。
目前,低温烧结方法主要有[15]: sol-ge l、热压法、超细粉体制备及添加助熔剂法。
JI N等[15]将Li2O掺杂在0.2[Pb(M g1/3Nb2/3)]-0.8[PbT i O3-PbZr O3]中,目的是降低烧结温度。
实验发现,在950℃低温下合成了性能良好的压电体,如Li2O质量分数为0.1%时,d33、k33、k p、tanδ最佳值分别为565pC/N、77.92%、63.7%、0.022。
以x Pb(M g1/3Nb2/3)O3-y Pb (N i1/3Nb2/3)O3-z Pb(Zr,T i)O3为基体并适量掺杂ZnO、Li2CO3、CdO等,所制备出的P MN-PNN-PZT压电陶瓷在900℃以下烧结仍具有良好的压电性[16,17]。
使用掺杂助熔剂进行性能改进是最基础的改进方法,如共沉淀法、溶盐法、溶胶-凝胶法、水热法等。
可是这些方法的缺点在于容易使PbO挥发、引起第二相、而且生产过程困难等。
为了克服这些不足,一些方法已被提出:如2阶段煅烧法、加入钙钛矿添加剂等。
Ananta等[18]通过采用2步烧结法在低温条件下(800℃和830℃)成功制备出了高致密度、高压电性能、低介质损耗的P MN、PF N压电陶瓷。
这种方法既减少氧化铅的挥发又不会引起第二相产生,而且节约能源。
C HU等[19]在他的文章中,特别对传统的低温烧结方法进行了评价,提出了钙钛矿添加剂低温烧结法,并且通过实验加以验证。
实验方法是:在0.25Pb(N i1/3Nb2/3)O3-0.75Pb(Zr0:52Ti0:48)O3中加入B i F e O3和B a(Cu0:5W0:5)O3在850℃和950℃合成了PNN-PZT-A基陶瓷。
与传统压电陶瓷相比,PNN-PZT-A基陶瓷的烧结温度降低了300~350℃,且具有良好的介电性(εr=4091)。