当前位置:文档之家› 过渡元素成键特征讲解

过渡元素成键特征讲解


(1)直线型端基配位
NO比CO多一个电子,在一些配位反应中,可将NO看作3电
子给予体, 即先将NO上的一个电子给予金属原子M, 使金属原 子氧化态降低1, NO变成NO+。 NO+和CO是等电子体,成键方
式与CO相同,NO+作为2e给予体与金属原子相结合(形成N-M
配位键),与此同时金属d轨道上的电子反馈到NO+ π*反键轨道 上,形成d π-π*(NO)反馈键。
N2的分子轨道
接受Ru2+的反馈d电子
(σ1s)2 (σ1s*)2 (σ2s)2 (σ2s*)2 (π2p)4 (σ2p )2 (π2p*)0 (σ2p*)0
x
给与Ru2+电子 形成双氮配合物时,N2分子最高占有轨道上的电子给予 金属空的d轨道 (M←N2), 形成σ配键; 同时金属M充满 电子的d轨道则向N2空的π轨道反馈电子 (M→N2), 形成
8.2 过渡元素的成键特征
8.2.1 羰基配合物:通常金属价态较低
1. 金属与羰基成键特征:以Ni(CO)4为例
Ni(0) 3d84s2 ↑↓ ↑↓ ↑↓ ↑ ↑ 3d Ni(CO)4 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
—— —— ——
4s
4p
——
—— —— ——
×× ×× ×× ×× 四面体 sp3杂化
NO究竟是以直线型端基、弯曲型端基配位
还是以桥基配位可以通过红外光谱进行鉴别
3. 亚硝酸根配合物
金属与NO2-能以五种不同的方式配位 :
4. 硝酸根配合物
金属离子与 NO3-的配位方式有如下几种:
四硝酸钛Ti(NO3)4中有4个双齿硝酸根,是8配位钛化
合物(十二面体结构)。其中所有8个Ti—O键都是等同的。
点击,观看动画
给予Ni的sp3杂化轨道
一方面,CO把一对电子填入Ni的sp3杂化轨道中形成σ键, 一方面又以空的π2p*轨道接受来自Ni d轨道的电子,形成π键, 从而增加配合物的稳定性,但削弱了CO内部成键,活化CO了 分子。
2. 羰基簇合物
过渡元素能和CO形成许多羰基簇合物。 羰基簇合物中金属原子多为低氧化态并具有适宜的d轨道。 双核和多核羰基簇合物中金属原子与羰基的结合方式有: 端基(1个CO和1个成簇原子相连);边桥基(1个CO与2个成 簇原子相连);面桥基(1个CO与3个成簇原子相连)。
dsp2杂化,接受三个Cl的三对孤对电子和C2H4中
的π电子形式四个σ键,同时Pt(II)充满电子的d轨
Sc Ti V Cr Y Zr Nb Mo La Hf Co Ru Rh Os Ir
Ni Pd Pt
30 Cu(●-● ) Ag(■-■) Au(▲-▲)
同 族 从 上 到 下 原 子 半 径 略 增 加
5~6
周 期 基 本 接 近
¶ /pm ë ¾ ×° ­ Ó Ô
8.1.3 过渡元素的氧化态
(2)弯曲型端基配位
N原子以sp2 杂化向过渡金属 提供一个电子(NO为1电子给予 体)形成σ键,∠MNO约120°。 如: [Co(NH3)5NO]2+、 Rh(Cl)2(NO)(pph3)2 [Ir(CO)Cl(NO)(pph3)2]BF4。
[RuCl(NO)2(pph3)2]+为直线
和弯曲端基混合配位 ,如图。
[RuCl(NO)2(pph3)2]+的结构
(3)桥基配位
桥基配位时,NO为3电子 给予体与 2 个或 3个金属原子 相连,例如: [(η5- C5H5)Fe(NO)]2 。
在(η5-C5H5)3Mn3(NO)4
中,其中3个NO是二桥基配 位,一个NO是三桥基配位。
[(η3-C5H5)Fe(μ2-NO)]2的结构
d→p π反馈键。
协同成键作用加强了金属与N2分子的作用力,但却削弱 了N2分子内部的键,相当于活化了N2分子。过渡金属双氮配
合物的出现为常温、常压下固氮提供了途径 。
2. 一氧化氮配合物(亚硝酰配合物)
NO作为配位体(NO+为亚硝酰离子) 与过渡金属原子通常 有三种键合方式: 直线型端基配位、 弯曲型端基配位和桥基配 位。
元 素 Sc +3 氧化态 Ti +2 +3 +4 V +2 +3 +4 +5 Cr +2 +3 Mn +2 +3 +4 Fe +2 +3 Co +2 +3 +4 Ni +2 +3 +4
+6
+6 +7
+6
(划横线表示常见氧化态)
左 Fe +2、+3 Ru +4 Os +4、+6、+8
氧化态先升高后降低 右 上 同族 高氧 化态 趋向 稳定 下
四硝酸钛Ti(NO3)4的结构
8.2.3 乙烯配合物
K2[PtCl4]+C2H4 == KCl + K[PtCl3(C2H4)]
稀HCl
蔡斯盐
Pt(II)5d8 ↑↓ ↑↓ ↑↓ ↑↓ 5d
——
—— —— —— ——
6s
6p
dsp2 杂化
蔡斯盐[PtCl3(C2H4)]-阴离子中,Pt(II)采取
端基
边桥基
面桥基
金属-金属(M-M)键是原子簇合物最基本的
共同特点。
金属-金属(M-M)键见 8.2.4
8.2.2 含氮配合物
1.双氮配合物与N2分子的活化
端基配位——以σ电子给予金属M M···N≡N M···N≡N···M
N2形成配合物
侧基配位——以π电子给予金属
N M N
[Ru(NH3)5(N2)]2+为端基配位,N2与CO时等电子体,形 成双氮配合物时,存在双重键。
第八章
8.1
过渡元素概述
过渡元素的通性
具有部分填充d或f壳层电子的元素。 狭义:(n-1)d1~8ns1~2 ⅢB~Ⅷ 8列 10列
广义:(n-1)d1~10ns1~2 ⅢB~ⅡB
过渡元素全部为金属,其化合物颜色多、 变 价多、形成配合物多。
8.1.1过渡元素的原子半径
ý ¶ ¹ É Ô ª Ë Ø Ô ­ × Ó ° ë ¾ ¶ 200 190 180 170 160 150 140 130 120 110 100 20

实测:Ni—C键长184pm
理论:Ni—C键长198pm;
CO把电子给予Ni,Ni上负电荷过剩,使该化合物不稳
题 定,而事实Ni(CO)4十分稳定。
CO的分子轨道
接受Ni的d电子
x
(σ1s)2 (σ1s*)2 (σ2s)2 (σ2s*)2 (π2p)4 (σ2p )2 (π2p*)0 (σ2p*)0
相关主题