当前位置:文档之家› 离子交换膜燃料电池技术进展

离子交换膜燃料电池技术进展


电池方面
质子交换膜 膜电极 催化剂层
气体扩散电极
双极板
扩散层
扩散层一方面提供反应气体、电子流和 排出生成水的通道,另一方面支持催化剂 层网络。一般应用炭纸或炭布制造,厚度 为0.18mm~0.35mm。炭纸、炭布的主要 原料是炭纤维,可分为聚丙烯腈基、沥青 基及粘胶基炭纤维三类。根据制造工艺不 同有普通型、高模量型和高强度型等系列 产品。
离子交换膜燃料电池技术 进展
0000
前言
众所周知,第一代动力系统蒸汽机和 第二代动力系统内燃机消耗了大量不可再 生的化石能源资源,且造成了严重的环境 污染。人类社会的可持续发展问题正面临 严峻挑战。根据国际能源机构预测,随着 经济的发展、社会的进步和人口的增长, 全世界的能源消耗在今后20年至少增加一 倍。如果没有新型的能源动力,世界将从 目前的能源短缺很快走向能源枯竭。为解 决经济发展与能源短缺及环境污染之间日 益加剧的矛盾,发展清洁、高效、可持续 发展的新能源动力技术已成了十分紧迫的 任务。
对铂电极的改性
Nafion乳液的主要成分是含有磺酸基团的聚全氟 乙烯衍生物,由于它既含有磺酸基团又具有全氟 乙烯结构,因此Nafion乳液既具有一定的离子导 电性又具有一定的疏水性。在离子交换膜燃料 电池铂炭复合电极催化层内添加一定量的Nafion 乳.Poitarzewski 认为, Nafion乳液可以在金属铂 催化剂表面形成一层亲水型的固体电解质微孔 薄膜,从而扩大了反应气体与金属铂的催化反应 界面,提高了铂催化剂的利用率。另一方面,由于 Nafion乳液导电性较弱,它的存在又增加了电极 的欧姆极化。因此,催化层内Nafion乳液 含量应有一个最佳范围,以平衡上述两个完全相 反的作用。
抗CO中毒能力
低温工作下的 PEMFC的电催化剂易吸附co而中毒 (co的浓度<20×10ˉ6 ),Pt表面吸附了CO后,会 降低H在铂金上的吸附,进而影响H2的电化学反应. 只有当阳极电势升到~0.6V(相对于标准氢电极)
时,CO才会被氧化成CO2,这就造成电池电压损失, 电池效率大大降低,因此CO中毒问题一直是为了 PEMFC研究的重要课题。提高其抗CO中毒的能力, 多采用 Pt-Ru/c贵金属合金电催化剂。K.A.Starz等 用碳载铂铑双金属催化系统制成电极,可耐受 100×10ˉ6的CO。
催化基层
铂含量的问题 对铂电极的改性 抗CO中毒能力 可替代品
铂含量
由于铂是贵金属,又是目前质子交换膜燃料电 池的最好的催化剂,所以在没有找到可替代的 催化剂之前,着重提高铂的利用效率,降低其 用量是应该考虑的。目前所使用的Pt/C催化 剂,Pt含量10%~40%, 0.05~0.2mg/cm2,即使 颗粒直径在20nm以下,Pt效率仅为10%左右。 使用Pt-Cr-Cu合金 (Cu:60%,Cr:14%,Pt:25.5%),可提高效率4~8 倍。
质子交换膜燃料电池的应用
PEMFC 的应用十分广泛,主要应用领域可 分为以下三大类:
用作便携电源、小型移动电源、车载电源、 备用电源、不间断电源等,适用于军事、 通讯、计算机、地质、微波站、气象观测 站、金融市场、医院及娱乐场所等领域, 以满足野外供电、应急供电以及高可靠性、 高稳定性供电的需要。
氢是世界上最多的元素,氢气来源极其广泛,是一种可再 生的能源资源,取之不尽,用之不绝。可通过石油、天然 气、甲醇、甲烷等进行重整制氢;也可通过电解水制氢、 光解水制氢、生物制氢等方法获取氢气。氢气的生产、储 存、运输和使用等技术目前均已非常成熟、安全、可靠。 在近年内,氢气的来源仍将以化石燃料重整制氢为主;但 从长远看,人们更倾向于将氢气视为储能载体,氢气来源 将主要依靠可再生的能源资源。在人类社会进入氢能经济 时代后,氢能将主要来自太阳能、风能、水能、地热能、 潮汐能以及生物能。太阳能、风能、水能、地热能、潮汐 能将大规模地用于发电并用于电解水,从而大量地将这些 不可直接存储的能量以氢能形式存储起来,供人们需要时 使用;此外,通过生物制氢的方法,城市和农村地区都可 以从有机垃圾和植物体中获取大量生物能(如甲烷)
试验表明:
1. 在铂炭复合电极催化层内添加少量Nafion 乳液,可有效地增大金属铂催化剂的反应 界面,提高铂的催化利用率,从而明显的 改善燃料电池的放电性能。
2. 当电极板中Nafion乳液的含量为3%~5% 时,燃料电池的放电电压和电流密度都处 于高峰值状态。用不同方法配制的Nafion 乳液对燃料电池放电性能也有一定影响。
质子交换膜燃料电池(PEMFC)被认 为是继蒸汽机和内燃机之后的具有能源革 命意义的新一代能源动力系统。它是一种 绿色能源技术,它使用可再生能源资源氢 气,并可实现零排放。
质子交换膜燃料电池的优点
PEMFC的优点主要有以下5点: 能量转化效率高。通过氢氧化合作用,直接将化学能转化
为电能,不通过热机过程,不受卡诺循环的限制。实现零 排放。其唯一的排放物是纯净水(及水蒸气),没有污染 物排放,是环保型能源。 运行噪声低,可靠性高。PEMFC 电池组无机械运动部件, 工作时仅有气体和水的流动。 维护方便。PEMFC 内部构造简单,电池模块呈现自然的 “积木化”结构,使得电池组的组装和维护都非常方便; 也很容易实现“免维护”设计。 发电效率受负荷变化的影响很小,非常适合于用作分散型 发电装置(作为主机组),也适于用作电网的“调峰”发 电机组(作为辅机组)。
是可用作自行车、助动车、摩托车、汽车、 火车、船舶等交通工具的动力,以满足环 保对车辆船舶排放的要求 工作温度低,启 动速度较快,功率密度较高(体积较小) 因此,很适于用作新一代交通工具动力。 这是一项潜力十分巨大的应用 。
是可用作分散型电站。PEMFC 电站可以与 电网供电系统共用,主要用于调峰;也可 作为分散型主供电源,独立供电,适于用 作海岛、山区、边远地区或新开发地区电 站。
相关主题