1.高层:10层及10层以上的居住建筑和建筑高度超过24m的公共建筑。
2.结构概念设计:是指根据理论与试验研究结果和工程经验等所形成的基本设计原则和设计思想,进行建筑和结构的总体布置并确定细部构造的过程。
3.结构选型:根据高度,高宽比,抗震设防类别、设防烈度、场地类别、结构材料、施工技术等。
应满足1》满足使用要求2》尽可能与建筑形式相一致3》平面和立面形式规则,受力好有足够的承载力,刚度延性。
4》施工简便,经济合理4.框架结构:布置灵活、可以形成较大空间、施工方便、较经济、侧向刚度小侧移大、对支座不均匀沉降较敏感。
剪力墙:抗侧移刚度大,侧移小、室内墙面平整;平面布置不灵活;结构自重大,吸收地震能量大;施工较麻烦,造价较高。
Hw/bw<=4柱;4-8短肢剪力墙;>8普通剪力墙5.高层基础适用范围:柱下独立基础:层数不多,土质较好的框架结构。
交叉梁基础:层数不多,土质一般的框架,剪力墙,框架剪力墙结构。
筏型基础:层数不多,土质较弱或层数较多土质较好时使用。
箱型基础:层数较多,土质较弱的高层,桩基础:地基持力层较深时6.结构平面布置:确定梁柱墙基础在平面上的位置,竖向布置:确定结构竖向形式、楼层高度、电梯机房、屋顶水箱、电梯井和楼梯间的位置高度,是否设地下室、转换层、加强层、技术夹层以及他们的位置和高度。
7.有效楼板宽度:指楼板实际传递水平地震作用时的有效宽度,就是楼板的实际宽度,应扣除楼板实际存在的洞口宽度和楼、电梯间在楼面处的开口尺寸等有效楼板宽度不宜小于该层楼面宽度的50%,楼板开洞总面积不已超过楼面面积的30%,楼板任一方向最小净宽度不宜小于5m净宽不应小于2m8. 楼板开大洞后的措施:加厚洞口附近楼板,提高楼板配筋率,采用双层双向配筋;洞口边缘设边梁或暗梁;在楼板洞口角部集中配置斜向钢筋。
9. 高层地下室功能:利用土体的侧压力防止水平力作用下结构的滑移和倾覆;减小土的重量,降低地基的附加应力;提高地基土的承载力;减小地震作用对上部结构的影响10. 伸缩缝框架55m剪力墙45 m 后浇带设置:框架梁和楼板的1/3跨处,设在剪力墙洞口上方连梁的跨中或内外墙交接处。
11. 徐变:理论上有利于高层建筑整体结构的变形协调并有利于减缓整体结构的应力集中,一般徐变对整体结构承载力和稳定影响较小,然而对上部连梁和高层建筑非结构构件的影响很大,通常伴随收缩变形同时发生,加大了结构竖向构件的后期变形12. 设计楼面梁的折减系数1.(1)超过25平米取0.9,50平米取0.9第八项汽车通道和停车库,单向板次梁0.8主梁0.6双向板0.8设计基础墙柱折减系数第八项单向板0.5双向板0.8.13. 高层建筑中,活荷载所占比例很小,特别是大量的住宅、旅馆和办公楼中活荷载一般在2-2.5KN/m2范围内,只占全部竖向荷载的15%-20%其次,高层建筑是复杂空间体系,层数跨数很多计算工作量很大,所以计算高层建筑竖向荷载产生的内力时按满布活荷载计算14. 屋面均布活荷载不应与雪荷载组合15. 震级:衡量地震释放能量大小的等级。
地震烈度:地震时在一定地点震动的强烈程度。
16.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? (10分)第一阶段为结构设计阶段,第二阶段为验算阶段。
第一阶段对构件的截面承载力验算和第二阶段对塑性变形验算,并与概念设计和构造措施相结合实现小震不裂、中震可修、在震不倒的目标。
16. 三水准:当遭遇平率较高强度较低的地震时,建筑物不需修理,处于弹性状态;在基本烈度的地震下允许结构达到或超过屈服极限产生塑性变形;罕遇地震作用下考虑防倒塌设计17. 地震作用的计算方法:底部剪力法,振型分解反应谱法,时程分析法。
.18.延性和延性比是什么?为什么抗震结构要具有延性?延性是指构件和结构屈服后,具有承载力不降低或基本不降低、且有足够塑性变形能力的一种性能,一般用延性比表示延性,即塑性变形能力的大小。
构件延性比:对于钢筋混凝土构件,当受拉钢筋屈服后,进入塑性状态,构件刚度降低,随着变形迅速增加,构件承载力略有增大,当承载力开始降低,就达到极限状态。
延性比是极限变形与屈服变形的比值。
当设计成延性结构时,由于塑性变形可以耗散地震能量,结构变形虽然会加大,但结构承受的地震作用不会很快上升,内力也不会再加大,因此具有延性的结构可降低对结构的承载力要求,也可以说,延性结构是用它的变形能力抵抗罕遇地震作用;反之,如果结构的延性不好,则必须有足够大的承载力抵抗地震.后者会多用材料,对于地震发生概率极少的抗震结构,延性结构是一种经济的设计对策.19.对书库,档案库,储藏室,通风机房和电梯机房其楼面活荷载组合系数0.7变为0.9. 恒载控制Sd=1.35Sgk+0.7*1.4Sqk 活载控制Sd=1.2Sgk+1.4Swk风+0.7*1.4Sqk。
20.抗震设计时,根据烈度,结构类型,房屋高度,采用不同抗震等级21.三角形荷载的等效均布荷载q=5/8q q=(1-2a2+3a3)q22.竖向荷载,分层法,迭代法,系数法。
水平荷载,反弯点法(横梁线刚度与柱线刚度之比小于三才适用)、D值法、门架法23当剪力墙孔洞面积与墙面面积之比不大于0.15且孔洞净距和孔洞至墙边的距离大于孔洞长边时,按整片墙计24.什么是内力组合和位移组合?内力组合是要组合构件的控制截面处的内力,位移组合主要是组合水平荷载作用下的结构层间位移。
组合工况分为无地震作用组合及有地震作用组合两类。
25.简述高层建筑结构结构设计的基本原则。
(11分)标准答案:注重概念设计,注重结构选型与平、立面布置的规则性,择优选用抗震和抗风好且经济的体系,加强构造措施,在抗震设计中,应保证结构的整体性能,使整个结构具有必要的承载力、刚度和延性。
结构应满足下列基本要求:1)具有必要的承载力、刚度和变形能力;2)避免因局部破坏而导致整个结构破坏;3)对可能的薄弱部位采取加强措施;4)避免局部突变和扭转效应形成的薄弱部位;5)宜具有多道抗震防线。
26.剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。
27.刚重比:结构的刚度和重力荷载之比。
是影响重力∆-P效应的主要参数。
28.延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。
在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。
具有上述性能的结构,称为延性结构。
29.确定建筑结构基础埋深时应考虑哪些问题?答:(1)建筑物的用途,有无地下室、设备基础和地下设施,基础的形式和构造;(2)作用在地基上的荷载大小和性质;(3)工程地质和水文地质条件;(4)相邻建筑物的基础埋深;(5)地基土冻胀和融陷的影响。
30. 对高层建筑结构进行竖向荷载作用下的内力计算时,是否要考虑活荷载的不利布置?答:对高层建筑,在计算活荷载产生的内力时,可不考虑活荷载的最不利布置。
这是因为目前我国钢筋混凝土高层建筑单位面积的重量大约为12~14kN /m 2(框架、框架—剪力墙结构体系)和14~16kN /m 2(剪力墙、简体结构体系),而其中活荷载平均值约为2.0kN /m 2左右,仅占全部竖向荷载15%左右,所以楼面活荷载的最不利布置对内力产生的影响较小;另一方面,高层建筑的层数和跨数都很多,不利布置方式繁多,难以一一计算。
为简化计算,可按活荷载满布进行计算,然后将梁跨中弯矩乘以1.1—1.2的放大系数。
31.结构承受的风荷载与哪些因素有关?答:当计算承重结构时,垂直于建筑物表面上的风荷载标准值k ω应按下式计算:ωμμβωz s z k = 式中 k ω——风荷载标准值,kN /m 2;ω——基本风压; sμ——风荷载体型系数,应按《荷载规范》第7.3节的规定采用;zμ——风压高度变化系数; zβ——高度z 处的风振系数。
对于围护结构,由于其刚性一般较大,在结构效应中可不必考虑其共振分量,此时可仅在平均风压的基础上,近似考虑脉动风瞬间的增大因素,通过阵风系数进行计算。
其单位面积上的风荷载标准值k ω应按下式计算:ωμμβωz s gz k = 式中 gz β——高度z 处的阵风系数。
32. (1)振型分解反应谱法此法是把结构作为多自由度体系,利用反应谱进行计算。
对于任何工程结构,均可用此法进行地震分析。
(2)底部剪力法对于多自由度体系,若计算地震反应时主要考虑基本振型的影响,则计算可以大大简化,此法为底部剪力法,是一种近似方法。
利用这种方法计算时,也是要利用反应谱。
它适用于高度不超过40m ,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构。
33. 简述D 值法和反弯点法的适用条件并比较它们的异同点答:对比较规则的、层数不多的框架结构,当柱轴向变形对内力及位移影响不大时,可采用D 值法或反弯点法计算水平荷载作用下的框架内力和位移。
用D 值法计算水平荷载下框架内力有三个基本假定:假定楼板在其本身平面内刚度为无限大,忽略柱轴向变形,忽略梁、柱剪切变形。
D 值法是更为一般的方法,普遍适用,而反弯点是D 值法特例,只在层数很少的多层框架中适用。
相同点求解过程一样,区别是反弯点法反弯点在各层固定,而D值法随梁柱刚度比而进行修正。
34.结构延性的作用如何?梁柱延性设计的原则有哪些?答:结构延性的作用:(1)防止脆性破坏;(2)承受某些偶然因素的作用;(3)实现塑性内力重分布;(4)有利于结构抗震。
梁柱延性设计的原则:(1)“强剪弱弯”设计原则——控制构件的破坏形态;(2)梁、柱剪跨比限制;(3)梁、柱剪压比限制;(4)柱轴压比限制及其他措施;(5)箍筋;(6)纵筋配筋率。