排气管压力降计算
2
7,19 mm HC
n l
2
= =
3 pcs. 0,3 m 0,72 mm HC
dHFR 2 = λ 1 ∗
2n ∗ l W1 ∗ ∗ ρ s1 = D1 2g
2.1.3.2 Total Pressure losses arised from friction Resistance - dHFRA
λ 1 = 0,0032 +
0,0108
Page 2 of 20
493101-095-210101B.xls/MainEngine
PROJECT 4-931.01
SCHIFFKO GMBH HAMBURG
CV 1100 PLUS
Calculation of Exhaust Gas Pipe Back-Pressure
dHTHS
= = = = =
t1 ∆T1
tห้องสมุดไป่ตู้ T2
1.4.2.1 Exh. Gas Values after Heater with Silencer and Spark Arrestor
Exh. Gas Density
p s 2=1 ,293 273,15 273,15+t 2
0 , 62
=
0,00 kg/m³
Q 2 = Q1 ∗ ρ s 2 =
1.4.3 Total Back-Pressure from Equipment - dHEQU
dHEQU = dHS + (dHTH ⇔ dHTHS )
=
188,00 mm HC
2. PIPE SYSTEM
2.1 Section before Exh. Gas Heater 2.1.1 General Values
Outlet Diameter
D1 D2 L
= = = = = = = 0,0000 0,000000000 0,00° 0
mm mm mm
tan α =
D2-D1/2L arc tang Angle
D12 1 D2 2
2
Local Resistance Coefficient
Z SR3 = tanα
PROJECT 4-931.01
SCHIFFKO GMBH HAMBURG
CV 1100 PLUS
Calculation of Exhaust Gas Pipe Back-Pressure
ACCOMP. DRWG.: 493101-096-212801C
133197-04 07.12.2004
Noted by GL: 19.11.2004 Ref No: Approved by "SEATRADE" with letter dated: Approved by "VEGA" with letter dated:
6,07 mm HC
dHFR1 = λ 1 ∗
2.1.3.2 Pressure losses in Compensators -dHFR2
Numbers of Compensators Length of Compensators Local Resistance
L 1 W1 ∗ ∗ ρ s1 = D1 2g
D1 F1 L1 hV1
= = = =
1108,00 mm 0,96 m2 18,04 m 9,50 m 38,34 m/s
W1 =
Q1 = 3600 ∗ ρ s1 ∗ F1
W1 ∗ D1 ∗ ρ s1 = η1
0,221 = 0.237 Re 1
Reynold Number
Re =
1481267
Friction coefficient
Ps1 =1 ,293
(=q1 * Ps1) (=Q1 / Ps1)
Q1 q1 t1 T1
273 ,15 273 ,15 +t 1
7
= = = = =
72.473 kg/h 133000,00 m³/h 375,00 °C 648,00 K 0,54 kg/m³
Exh. Gas dynamic Viscosity Exh. Gas kinematic Viscosity
n α R ZSR1
2
= = = =
4 pcs. 15 ° 1,5D 0,075 each 12,24 mm HC
dHSR1 = n ∗ Z SR1 ∗
W1 ∗ ρ s1 = 2g
2.1.4.2 Bend - dHSR2
Nbs. of Bends Angle of Bend Radius of Bend Local Resistance Coefficient Bend Local Resistance
dH F R A= d H FR 1 + d H F R2
= 7,91 mm HC
2.1.4 Pressure losses arised from sharp Resistance - dHSRA 2.1.4.1 Sharp Bend - dHSR1
Nbs. of Sharp Bends Angle of Sharp Bend Radius of Sharp Bend Local Resistance Coefficient Sharp Bend Local Resistance
1.2 EQUIPMENT
1.2.1 Exh. Gas Values after Main Engine and before Heater
Exh. Gas Flow at 100% MCR and ISO Ambient Condition Exh. Gas Temperature at 100% MCR and ISO Ambient Condition Absolute Exh. Gas Temperatur Exh. Gas Density
1. MAIN ENGINE - 100% MCR
1.1 ASSUMPTIONS
1.1.1 General
Type of Fuel Viscosity of Fuel Density of Fuel (max.) Gravity Acceleration Air Density (ISO) at 1013,25 mbar and 25°C ν = = = = = HFO IF 700 cSt at 50°C 991,00 kg/m³ 9,81 m/sec2 1,184 kg/m³
DN dHs
1.4.1 Exh. Gas Heater Data
Numbers Type Capacity at 100% MCR Back-Pressure Exh. Gas Inlet Temperatur Exh. Gas lost Temperatur in Heater Exh. Gas Outlet Temperatur Absolute Exh. Gas Temperatur (- 0,3°C per length of pipe before heater) = = = 1 pcs. 1.100 kW 148,00 mm HC 369,59 °C 17,00 K 352,59 °C 625,74 K
ρF
g
ρr
1.1.2 Main Engine
Type Power Speed max. allowable Exh. Gas Back-Pressure
(= mbar * 10,19746777 mmHC/mbar)
dHBPA
= =
MAN B&W 7 L58/64 9.730 kW 428 rpm 30 mbar 305,92 mm HC
dHTH
= = = = =
t1 ∆T1
t2 T2
Page 1 of 20
493101-095-210101B.xls/MainEngine
PROJECT 4-931.01
SCHIFFKO GMBH HAMBURG
CV 1100 PLUS
Calculation of Exhaust Gas Pipe Back-Pressure
Numbers Type Power (85%) Back-Pressure (chosen) Exh. Gas Inlet Temperatur Exh. Gas lost Temperatur in Heater Exh. Gas Outlet Temperatur Absolute Exh. Gas Temperatur = = = pcs. kW 0,00 mm HC 0,00 °C 0,00 K 0,00 °C 0,00 K
Pipe 1120 x 6,0 - DIN 86009 Inner Diameter Cross Section of the Pipe Total Length of the Main Exh. Gas Pipe before heater Total Height of the Main Exh. Gas Pipe before heater Velocity in pipe
υ 2 = 5,18 * 10
* ( t 10,62 ) =
= =
2,80604E-05 Ns/m² 1,5838E-05 Ns/m² 128.401,07 m³/h
η2 = υ 2 • ρ s 2
Q 2 = Q1 / ρ s 2
1.4.2 Combined Exh. Gas Heater with Silencer and Spark Arrestor Data
n α R ZSR2
= = = = =
pcs. ° 0,0 0 each 0,00 mm HC
dHSR 2 = n ∗ Z SR 2 ∗
W1 ∗ ρ s1 2g
2