当前位置:文档之家› 纳滤膜的发展概况

纳滤膜的发展概况

纳滤膜的发展概况————————————————————————————————作者:————————————————————————————————日期:第四章纳滤第一节概述一、纳滤膜的发展概况纳滤(NF)是20世纪80年代后期发展起来的一种介于反渗透和超滤之间的新型膜分离技术,早期称为“低压反渗透”或“疏松反渗透”。

纳滤技术是为了适应工业软化水的需求及降低成本而发展起来的一种新型的压力驱动膜过程。

纳滤膜的截留分子量在200-2000之间,膜孔径约为1nm左右,适宜分离大小约为lnm的溶解组分,故称为“纳滤”。

纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效的截留二价及高价离子、分子量高于200的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分于量和低分子量有机物的分离,且成本比传统工艺还要低。

因而被广泛应用于超纯水制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。

近年来,纳滤膜的研究与发展非常迅猛。

从美国专利看:最早有关纳滤技术的专利出现于20世纪80年代末,到1990年,只有9项专利,而在以后的5年中(1991~1995),出现了69项专利,到目前为止,有关纳滤膜及其应用的专利已超过330项,其应用涉及石油化工、海洋化工、水处理、生物、生化、制药、制糖、食品、环保、冶金等众多领域。

我国从20世纪80年代后期就开始了纳滤膜的研制,在实验室中相继开发了CA-CTA纳滤膜,S-PES涂层纳滤膜和芳香聚酰胺复合纳滤膜,并对其性能的表征及污染机理等方面进行了试验研究,取得了一些初步的成果。

但与国外相比,我国纳滤膜的研制技术和应用开发都还处于起步阶段。

二、纳滤膜的特点由于纳滤膜特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使其具有较特殊的分离性能。

纳滤膜的一个很大特征是膜表面或膜中存在带电基团,因此纳滤膜分离具有两个特性,即筛分效应和电荷效应。

分子量大于膜的截留分子量的物质,将被膜截留,反之则透过,这就是膜的筛分效应;膜的电荷效应又称为Donnan效应,是指离子与膜所带电荷的静电相互作用。

对不带电荷的分子的过滤主要是靠位阻效应即筛分效应,利用筛分效应可以将不同分子量的物质分离;而对带有电荷的物质的过滤主要是靠荷电效应,纳滤膜表面分离层可以由聚电解质构成,膜表面带有一定的电荷,大多数纳滤膜的表面带有负电荷,它们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在较低压力下仍具有较高脱盐性能的重要原因。

图4-1纳滤膜的分离特性纳滤膜的特点如下:1.对不同价态的离子截留效果不同,对二价和高价离子的截留率明显高于单价离子。

对阴离子的截留率按下列顺序递增:NO3-,Cl-,OH-,SO42-,CO32-;对阳离子的截留率按下列顺序递增:H+,Na+,K+,Mg2+,Ca2+,Cu2+。

2.对离子截留受离子半径的影响。

在分离同种离子时,离子价数相等,离子半径越小,膜对该离子的截留率越小;离子价数越大,膜对该离子的截留率越高。

3.截留分子量在200~1000之间,适用于分子大小为1nm的溶解组分的分离。

对疏水型胶体油、蛋白质和其它有机物具有较强的抗污染性,与反渗透膜相比,纳滤膜具有操作压力低、水通量大的特点;与微滤膜相比,纳滤膜又具有截留低分子量物质能力强的特点,对许多中等分子量的溶质,如消毒副产物的前驱物、农药等微量有机物、致突变物等杂质能有效去除,从而确立了纳滤在水处理中的地位。

纳滤技术填补了超滤和反渗透之间的空白,它能截留透过超滤膜的小分子量有机物,透过被反渗透膜所截留的无机盐。

纳滤与电渗析、离子交换和传统热蒸发技术相比,它可以同时脱盐兼浓缩,在有机物与无机物混合液的浓缩与分离方面具有无可比拟的优点。

第二节纳滤膜的传质机理及模型一、纳滤膜的传质机理纳滤与超滤、反渗透一样,均是以压力差为驱动力的膜过程,但其传质机理有所不同。

一般认为,超滤膜由于孔径较大,传质过程主要为孔流形式(筛分效应);反渗透膜属于无孔膜,其传质过程为溶解-扩散过程(静电效应);纳滤膜存在纳米级微孔,且大部分荷负电,对无机盐的分离行为不仅受化学势控制,同时也受电势梯度的影响。

Van der Bruggen等在4种纳滤膜上研究了25种有机物的分子大小、极性及电荷对截留的影响,发现截留率会由于分子的化学结构和电荷、极性等特性的不同而异,表观截留率与表示分子尺寸的3种参数(Stokes直径、当量摩尔直径和计算分子直径)之间有良好的相关性,因此,可以用截留率与尺寸参数的曲线关系代替截留分子量来描述膜的分离特性。

实验结果发现,纳滤膜对高偶极矩的分子的截留率高于无极性的分子,这种独立的膜电荷效应可解释为静电作用而使偶极朝向膜。

有机分子的截留行为将受电荷的影响,且不同孔隙有很大差异:小孔隙的膜受电荷影响小,当孔隙变大后,这种效应的影响作用变得明显,当孔隙非常大时,电荷效应成了高电荷膜截留率的决定因素。

Wijmans认为,当膜孔径很小时,其传质机理为孔流机理和溶解-扩散之间的过渡态。

这是因为,存在于溶解-扩散膜中的传质通道是随着构成膜的高分子链间的自由体积的出现而出现的,渗透物通过由此产生的通道而扩散透过膜;在孔流膜中,“自由体积”形成的孔相对固定,位置和通道的大小都不会有大的波动.所以“自由体积”越大(即孔越大),孔持续的时间越长,膜的性质表现为孔流的特性。

传质通道的位置和大小不会发生改变的孔称为永久“孔”,相反膜中的传质通道为非固定的称为暂时孔。

超滤膜中的“孔”是永久性的,而反渗透中的“孔”是暂时性的。

初步估计,永久孔与短暂存在孔的过渡态的孔径为0.5-10 nm,也就是纳滤膜的孔径范围。

对于纯电解质溶液,因唐南平衡,同性离子会被带电的膜活性层所排斥,如果同性离子为多价,截留率会更高。

同时为了保持电荷平衡,反离子也会被截留,导致电迁移流动与对流方向相反。

但是,带多价反离子的共离子较带单价反离子的共离子的截留率要低,这可能是多价反离子对膜电荷的吸附和屏蔽作用所致。

对于两种同性离子混合物溶液,根据唐南理论,与它们各自的单纯盐溶液相比,多价共离子比单价共离子更容易被截留。

两种共离子的混合液,由于它们迁移率的不同,使低迁移率的反离子的截留逐渐减少,而高迁移的反离子的浓度增加,造成电流和电迁移的“抵消”。

纳滤膜对极性小分子有机物的选择性截留是基于溶质的尺寸和电荷。

溶质的传递可以理解为以下两步:第一步,根据离子所带电荷选择性地吸附在膜的表面;第二步,在扩散、对流、电泳移动性的共同作用下传递通过膜。

Martin-OrueC等对氨基酸和多胺的纳滤机理进行研究认为:不论是哪种溶液,在溶质的传递行为中,其电荷效应(即与膜电荷相同的离子同膜的排斥或与膜电荷相反的离子同膜的吸引)比尺寸效应更占优势。

中性氨基酸也可以被看作是带一个正电荷和一个负电荷的氨基酸,每种氨基酸的传递是同其正负电荷的数目而不是同球体静电荷相关。

这些确立了由对流-吸引和排斥以及对流-电迁移而形成溶质通过膜的流动,导致了溶质的传递。

二、纳滤膜的传质模型1.非平衡热力学模型纳滤膜分离过程也是以压力差为驱动力,产生溶质和溶剂的透过通量,其通量可以由非平衡热力学模型建立的现象论方程式来表征。

如膜的溶剂透过通量Jv(m/s)和溶质透过通量Js(mol/m2•s)可以分别用下列方程式表示:Jv =L p (ΔP -бΔЛ) 4-1 Js =-(P Δx)dxdc+(1-б)Jv C 4-2 式中,б为膜的反射系数、P 为溶质透过系数(m/s)、LP 为纯水透过系数(m/s•Pa),它们均为膜的特征参数;ΔP 为膜两侧的操作压力差(P a),ΔЛ为膜两侧的溶质渗透压力差(P a);Δx为膜厚、c为膜内溶质浓度。

将上述微分方程沿膜厚方向积分可以得到膜的截留率R :Cm Cp R -=1=)F -(1F)-(1σσ 4-3 式中,F=ex p[-Jv(1-б)/P];Cm 和Cp 分别为料液侧膜面和透过液的浓度(m ol/L)。

由4-3式可知膜的反射系数相当于溶剂透过通量无限大时的最大截留率。

膜特征参数可以通过实验数据进行关联而求得。

2. 电荷模型电荷模型又可分为空间电荷模型和固定电荷模型。

固定电荷模型假设膜是均质无孔的,在膜中的固定电荷分布是均匀的,它不考虑孔径等结构参数,认为离子浓度和电势能在传质方向具有一定的梯度,该模型的数学分析简单。

空间电荷模型假设膜为有孔膜,是由贯穿性的毛细管通道组成,电荷分布在毛细管通道的表面,离子浓度和电势能除了在传质方向分布不均外,在孔的径向也存在电势能分布和离子浓度分布。

比较上述两种模型,空间电荷模型认为离子浓度和电势能在径向的分布是不均匀的,而固定电荷模型认为它们是一致的,因此可以说固定电荷模型是空间电荷模型的简单化形式。

Wan g等的研究表明,与空间电荷模型相比,用固定电荷模型所预测的截留率的数值要大,这可能是在空间电荷模型中,积累在荷电毛细管壁附近的反电荷离子屏蔽了电热能,使得电荷离子更加容易进入毛细管通道。

3. 细孔模型Wa ng等根据浓差极化模型和非平衡热力学模型,对不同品牌的纳滤膜在醇类和糖类等中性溶质体系的透过实验数据进行回归计算,求得膜的特征参数(即膜的反射系数和溶质透过系数),再由这些膜特征参数的实验结果,根据细孔模型估算了纳滤膜的细孔结构参数,结果表明,细孔模型适用于纳滤膜的结构评价。

4. 静电位阻模型Wang 等又将细孔模型和固定电荷模型结合起来,建立了静电位阻模型。

该模型假定膜分离层由孔径均一、表面电荷分布均匀的微孔构成,其结构参数包括孔径γp ,开孔率Αk ,孔道长度即膜分离层厚度Δx ,电荷特性则表示为膜的体积电荷密度x (或膜的孔壁表面电荷密度q)。

根据上述膜的结构参数和电荷特性参数,对于已知的分离体系,就可以预测各种溶质(中性分子、离子)通过膜的传递分离特性。

第三节 纳滤膜的制备方法纳滤膜的表层较反渗透膜疏松得多,较超滤膜的表层又要致密得多。

因此,纳滤膜制膜关键是合理调节表层的疏松程度,以形成大量具有纳米级(10-9m)的表层孔。

目前,主要有以下四种制备方法。

一、转化法转化法又分为超滤膜转化法和反渗透膜转化法两种。

1. 超滤膜转化法纳滤膜的表层较超滤膜致密,故可以调节制膜工艺条件先制得较小孔径的超滤膜,然后对该膜进行热处理、荷电化后处理使膜表面致密化,而得到具有纳米级表层孔的纳滤膜。

利用此法,高田耕一等人先制得小孔径的聚β-氯苯乙炔(P PCA )超滤膜,再对该膜热处理,最后用发烟硫酸磺化,制得PPCA 纳滤膜。

该膜在0.4M Pa 压力下,对聚乙烯醇-1000的截留率高达94%,水通量为1.3m 3/(m 2·d)。

2. 反渗透膜转化法纳滤膜的表层较反渗透膜疏松,可以在充分研究反渗透膜制膜工艺条件的基础上,调整合适的有利于膜表面疏松化的工艺条件,如铸膜液中添加剂的选择,各成分的比例及浓度等,使表层疏松化而制得纳滤膜。

相关主题