当前位置:
文档之家› 第8章 反馈控制技术(1)AGC与AFC电路原理
第8章 反馈控制技术(1)AGC与AFC电路原理
型、峰值型和选通型三种。
1. 平均值型AGC电路 平均值型AGC电路适应于被控信号中含有一个不随有用 信号变化的平均值的情况。调幅接收机的自动增益控制广泛
采用这种电路。
图8.26 平均值型电平检测电路
图8.26是一种常用的等效电路,二极管VD和R1、R2、
C1、C2构成一个检波器,中频输出信号uo经检波后,除了得 到音频信号之外,还有一个平均直流分量up,它的大小和中
将图8.2.1改画成图8.2.4所示的电路模型
图中,Kg即为Ac
8.2.2 放大器的增益控制——可控增益电路
可控增益电路是在控制信号作用下改变增益,从而改变 输出信号的电平,达到稳定输出电平的目的。这部分电路通
常是与整个系统共用的,并不是单独属于AGC系统。例如接
收机的高、中频放大器,它既是接收机的信号通道,又是 AGC系统的可控增益电路。要求可控增益电路只改变增益而 不致使信号失真。如果单级增益变化范围不能满足要求时, 还可采用多级控制的方法。
若用
代表AGC电路输入信号电平的变化范围,则 用 U o max mo U o min 代表AGC电路输出信号电平允许变化范围。
取
ng=mi/mo
8.2.1
称ng为增益控制倍数,显然ng愈大控制范围愈宽。
mi U i max / U i min U o min U i max Amax ng mo U o max / U o min U i min U o max Amin
正向传递函数是指输出信号Y(s)与误差信号E(s)之比。
T f ( s) Y ( s) Ac E ( s)
8.1.9
误差传递函数是指误差信号E(s)与参考信号R(s)之比。
Acp E ( s) Y ( s) E ( s) T ( s) Te ( s) R( s) R( s) Y ( s) T f ( s) 1 Ac Acp H ( s)
8.2.7
5.可控增益电路 可控增益电路能在控制电压作用下改变增益。要求这个
电路在增益变化时,不使信号产生线性或非线性失真。同时
要求它的增益变化范围大,它将直接影响AGC系统的增益控
制倍数ng。所以,可控增益 电路的性能对整个AGC系统
的技术指标影响是很大的。
可控增益电路的增益与控制电压的关系一般是非线性 的。通常最关心的是AGC系统的稳定情况。为简化分析,假
8.2.2
式中,Amax=Uomin/Uimin 表示AGC电路的最大增益(对应低电平时) Amin=Uomax/Uimax 表示AGC电路的最小增益(对应高电平时) 可见,要想扩大AGC电路的控制范围,就要增大AGC 电路的增益控制倍数,也就是要求AGC电路有较大的增益 变化范围。同时要根据信号的性质和需要,设计适当的响 应时间。
8.2.1 AGC电路的组成、工作原理及性能分析
AGC电路的组成如图8.11所示。它包含有可控增益电 路、电平检测电路、滤波器、比较器和控制信号产生器。
图8.11 AGC电路组成
1.电平检测电路
电平检测电路的功能就是检测出输出信号的电平值。它
的输入信号就是AGC电路的输出信号,可能是调幅波或调频
波,也可能是声音信号或图象信号。这些信号的幅度也是随
频载波电平成正比,与信号的调幅度无关,这个电压就可以
用做AGC控制电压。Rp、Cp组成一个低通滤波器。把检波后 的音频分量滤掉,使控制电平up不受音频信号的影响。 为了减小反调制作用所产生的失真,时间常数τp=RpCp
(足够大但不能太大,太大了跟不上信号的变化)应根据调制
信号的最低频率FL来选择。其数值可以用下式来计算:
3. 选通型AGC电路
选通型AGC电路具有更强的抗干扰能力,多用于高质 量
的电视接收机和某些雷达接收机。 它的基本思想是只在反映信号电平的时间范围内对信号
8.1.10
8.2 自动增益控制(AGC)电路
自动增益控制电路是某些电子设备,特别是接收设备的
重要的辅助电路之一,其主要作用是使设备的输出电平保持
为一定的数值。因此也称自动电平控制(ALC)电路。 接收机的输出电平取决于输入信号电平和接收机的增 益。由于种种原因,接收机的输入信号变化范围往往很大, 微弱时可以是一微伏或几十微伏,信号强时可达几百毫伏。
它的传输特性为
H ( s) U f (s) 1 U1 ( s) 1 sRC
8.2.5
3.比较器
将给定的基准电平Ur与滤波器输出的uf进行比较,输出 误差信号为ue。通常ue与(ur-uf)成正比,所以,比较器特性的 复频域表示式为 Ue(s)=Acp[Ur(s)-uf(s)] 8.2.6
其中,Acp为一比例常数。
4.控制信号产生器 控制信号产生器的功能是将误差信号变换为适于可变增 益电路需要的控制信号。这种变换通常是幅度的放大或极性 的变换。有的还设置一个初始值,以保证输入信号小于某一
电平时,保持放大器的增益最大。因此,它的特性的复频
域
表示式为 U (s)=A U (s) p p e 其中,Ap为比例常数。
图8.22 二极管电控衰减器
交流等效电路
图8.23是一种改进电路。控制电压up通过三极管VT来控 制VD1、VD2和VD3 、VD4的动态电阻。当输入信号较弱时, 控制电压up的(负压较小)值较小,晶体管VT的电流较大, 流过VD1~VD4的电流也比较大,其动态电阻rd小,因而信号
ui从四只二极管通过时的衰减很小。当输入信号增大时,up
第八章 无线电技术中的反馈控制电路 (2) AGC和AFC电路原理
8.2 自动增益控制(AGC)电路
8.2.1 电路的组成、工作原理和性能分析 8.2.2 放大器的增益控制——可控增益电路 8.2.3 AGC控制电压的产生——电平检测电路 8.2.4 AGC电路举例
8.3 自动频率控制(AFC)电路 8.3.1 AFC电路的组成和基本 特性 8.3.2 AFC电路的应用举例 作业:8.7 8.8
8.1.2 反馈控制系统 的基本分析
1. 系统的传递函数及数学模型
闭环传递函数是指输出信号Y(s)与参考信号R(s)之比 Ac Acp Y ( s) T ( s) T f ( s )Te ( s ) 8.1.7 R( s) 1 Ac Acp H ( s) 开环传递函数是指反馈信号F(s)与误差信号E(s)之比 F ( s) 8.1.8 Top ( s) Ac H ( s) E ( s)
器的电路(电视机中AGC采用)。
要求充电时 间小,放电
时间大,C1
小R1大。
图8.28 峰值型电平检测电路及其波形
峰值型AGC电路具有一些优点:
1、输出的AGC控制电压大。
2、较好的抗干扰能力(幅度小于同步信号的干扰) 缺点: 干扰幅度大于同步信号,而且混入的时间较长,那么, 它对AGC电路就会产生危害。因此,这种电路的抗干扰性能 还不够理想。
m
4kT
o
o
2. 利用在放大器级间插入可控衰减器改变增益
在放大器各级间插入由二极管和电阻网络构成的电控衰 减器来控制增益,是增益控制的一种较好的方法。 简单的二极管电控衰减器如图8.22所示。电阻R和二极 管VD的动态电阻rd构成一个分压器。当控制电压up变化时,
rd随着变化,Байду номын сангаас而改变分压器的分压比。
电平检测电路根据控制电压产生方法的不同,有平均值型、 峰值型和选通型。
2.滤波器
对于以不同频率变化的电平 信号,滤波器将有不同的传输特 性。用此可以控制AGC电路的响 应时间。也就是决定当输入电平
图8.12 RC积分电路
以不同的频率变化时输出电平将
怎样变化。常用的是单节RC积分电路。如图8.12所示。
控制过程如下:
输入大→ Up小 →PIN内阻大→ 衰减大→输出小
图8.25 用PIN管作为电控衰减器的放大电路
8.2.3 AGC控制电压的产生——电平检测电路
AGC控制电压是由电平检测电路形成的,电平检测电路 的功能是从系统输出信号中取出电平信息。通常要求其输出 应与信号电平成比例。 按照控制电压产生方法的不同,电压检测电路有平均值
Cp 5~10 2FL R p
8.2.26
(反调制---τp太小,则控制电压将会跟随调制信号变化,使输出音频信号受到 附加的调制。相对来说,低频比高频更容易受到反调制。)
2. 峰值型AGC电路
峰值型AGC电路适应于被控信号中含有一个不随有用信
号变化的峰值的情况。 峰值型AGC检波电路不能和图象信号的检波共用一个检 波器。必须另外设置一个峰值检波器。图8.28就是这种检波
8.1 反馈控制系统的概念
8.1.2 反馈控制系统的组成、工作过程和特点 自动增益控制(AGC)电路、自动频率控制(AFC)电路及自 动相位控制(APC)电路。
1.反馈控制系统的工作过程 ①参考信号r0保持不变,输 出信号y发生了变化 ②参考信号r0发生了变化 总之,由于反馈控制作用,较大的参考信号变化和输出信号变化, 只引起小的误差信号变化。 两个条件: ① 是要反馈信号变化的方向与参考信号变化的方向一致 ② 是从误差信号到反馈信号的整个通路(含可控特性设备、反馈环节 和比较器)的增益要高。
也就是说最强信号和最弱信号相差可达几十分贝。这种变化
范围叫做接收机的动态范围。
自动增益控制电路是输入信号电平变化时,用改变增益 的方法维持输出信号电平基本不变的一种反馈控制系统。
对自动增益控制电路的主要要求: 控制范围要宽,信号
失真要小,要有适当的响应时间,同时,不影响接收机的噪 声性能。
U i max mi U i min
可控增益电路通常是一个可变增益放大器。控制放大器增益的方法主 要有:控制放大器本身的某些参数,或在放大器级间插入可控衰减器。