当前位置:文档之家› 双容水箱液位控制 开题研究报告

双容水箱液位控制 开题研究报告

双容水箱液位控制开题研究报告————————————————————————————————作者:————————————————————————————————日期:自动控制系统课程设计双容水箱系统——开题报告学校:北京工业大学学院:电控学院专业:自动化班级:组号:第五组组员:实验日期:指导教师:目录1、绪论 (2)2、研究对象的数学模型及特性分析 (3)3、控制系统的性能指标要求 (5)4、控制器的选择与控制方案的设计与仿真 (6)5、拟采用的实验步骤及理想的实验曲线 (15)6、模型参数获取的实验设计 (17)7、附录 (19)1绪论双容水箱系统是一种比较常见的工业现场液位系统,在实际生产中,双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。

通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。

经过比较和筛选,串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性,因此采用串级控制系统PID控制对双容水箱液位控制系统实现控制。

论文以THBDC-1型控制理论•计算机控制技术实验平台为基础的实验数据作为出发点,利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。

对曲线进行处理求出各水箱的参数,用所求出的参数列写出水箱的传递函数。

采用复杂控制系统中的串级控制系统列写出系统框图,根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值,从而满足控制系统对各项性能的要求。

2、研究对象的数学模型及特性分析在控制系统设计工作中,需要针对被控过程中的合适对象建立数学模型。

被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。

被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。

在液位串级控制系统中,我们所关心的是如何控制好水箱的液位。

上水箱和下水箱是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。

上水箱和下水箱为过程控制实验装置中上下两个串接的有机玻璃圆筒形水箱,另有不锈钢储水箱负责供水与储水。

2.1 水箱模型分析双容水箱液位控制结构图如下图所示:图2-3 双容水箱液位控制结构图设流量Q 1为双容水箱的输入量,下水箱的液位高度H 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为式中 K=R 4,T 1=R 2C 1,T 2=R 4C 2,R 2、R 4分别为阀V 3和V 4的液阻,C 1 和C 2分别为左水箱和右水箱的容量系数。

式中的K 、T 1和T 2可由实验求得的阶跃响应曲线求出。

具体的做法是在下图所示的阶跃响应曲线上取:6)-1 ( *)1*)(1*()()()(2112e sS T S T K S G S Q S H τ-++==图2-4 阶跃响应曲线1)、h 2(t )稳态值的渐近线h 2(∞); 2)、h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点A 和对应的时间t 1; 3)、h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点B 和对应的时间t 2。

然后,利用下面的近似公式计算式1-6中的参数K 、T1和T2。

其中:对于式(1-6)所示的二阶过程,0.32<t 1/t 2<0.46。

当t 1/t 2=0.32时 ,为一阶环节;当t 1/t 2=0.46时,过程的传递函数G(S)=K/(TS+1)2(此时T 1=T 2=T=(t 1+t 2)/2*2.18 )过曲线的拐点做一条切线,它与横轴交于A 点,OA 即为滞后时间常数て。

注意:在以上对象模型的分析过程中,忽略了泵、进水阀、出水阀等环节对水箱模型的影响,因此水箱特性的实际测试结果,可能与理论分析有一定偏差。

2.16t t T T )4)(K 21212+≈+=∞=、阶跃输入量输入稳态值O R h )55.074.1()T (T T T)52122121-≈+t t 、 t h t0 0.4 0.8 2 0 0 ( h 00 ( h 0 0( 1 t 2 B A h 2 2 (t)2 Pて A3、控制系统的性能指标要求双容水箱性能指标要求: (1) 衰减率4:1~10:1 (2) 超调量%10≤p M (3) 调节时间s t s 45≤ (4) 稳态误差0=ss e4、控制器的选择与控制方案的设计与仿真1、控制器——PID 控制原理目前,随着控制理论的发展和计算机技术的广泛应用,PID 控制技术日趋成熟。

先进的PID 控制方案和智能PID 控制器(仪表)已经很多,并且在工程实际中得到了广泛的应用。

现在有利用PID 控制实现的压力、温度、流量、液位控制器,能实现PID 控制功能的可编程控制器(PLC),还有可实现PID 控制的计算机系统等。

在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID 控制,又称PID 调节。

PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

图2.1 PID 控制基本原理图PID 控制器是一种线性负反馈控制器,根据给定值r(t)与实际值y(t)构成控制偏差:式(3.1) 控制规律为:式(3.2)或以传递函数形式表示:式(3.3) ++r(t) 比例P 积分I 微分D 被控对象 y(t)()()()()01tde t U t Kp e t e i Td Ti dt ⎡⎤=++⎢⎥⎣⎦⎰)11()()()(Tds Tiskp s E s U s G ++==)()()(t y t r t e -=K P:比例系数 T I:积分时间常数 T D:微分时间常数。

PID控制器各控制规律的作用如下:(1)比例控制(P):比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系,能较快克服扰动,使系统稳定下来。

但当仅有比例控制时系统输出存在稳态误差(2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称此控制系统是有差系统。

为了消除稳态误差,在控制器中必须引入“积分项”。

积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

但是过大的积分速度会降低系统的稳定程度,出现发散的振荡过程。

比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

(3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性环节或有滞后环节,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。

所以在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

特别对于有较大惯性或滞后环节的被控对象,比例积分控制能改善系统在调节过程中动态特性。

PID控制器的参数整定是控制系统设计的重要内容,应根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

2、控制方案的设计与仿真控制方案设计是过程控制系统设计的核心,需要以被控过程模型和系统性能要求为依据,合理选择系统性能指标,合理选择被控参数,合理设计控制规律,选择检测、变送器和选择执行器。

选择正确的设计方案才能使先进的过程仪表和计算机系统在工业生产过程中发挥良好的作2.1液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。

在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。

通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。

通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。

如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原料的浪费﹑产品的不合格,甚至造成生产事故,所以设计一个良好的液位控制系统在工业生产中有着重要的实际意义。

在液位串级控制系统的设计中采用THJ-2高级过程控制实验系统的实验数据作为基础,展开设计控制系统及工程实现的工作。

串级控制系统从总体上看,是定值控制系统,因此主被控变量在扰动作用下的过度过程和单回路定值控制系统的过度过程,具有相同的品质指标和类似的形式。

但是,串级控制系统在结构上增加了一个随动的副回路,因此,与单回路相比有以下几个优点。

1)串级控制系统对进入副回路的扰动具有较强的克服能力。

2)由于副回路的存在,明显改善了对象的特性,提高了系统的工作频率。

3)串级控制系统具有一定的自适应能力。

除上述优点外串级控制系统在有些场合应用效果显著,它主要应用于以下4中场合。

1)对象的容量滞后比较大。

2)调节对象的纯滞后比较长。

3)系统内存在激烈且幅值较大的干扰作用。

4)调节对象具有较大的非线性特性而且负荷变化较大。

而双容水箱均有上述缺点,因此可以看出串级控制系统很适合应用于双容水箱液位控制系统的设计2.2系统控制方案设计2.2.1控制系统性能指标(1) 静态偏差:系统过渡过程终了时的给定值与被控参数稳态值之差。

(2) 衰减率:闭环控制系统被施加输入信号后,输出响应中振荡过程的衰减指标,即振荡经过一个周期以后,波动幅度衰减的百分数。

本实验的衰减率要求在4:1~10:1.(3) 超调量:输出响应中过渡过程开始后,被控参数第一个波峰值与稳态值之差,占稳态值的百分比,用于衡量控制系统动态过程的准确性。

(4) 调节时间:从过渡过程开始到被控参数进入稳态值-5%—+5%范围所需的时间2.2.2方案设计设计建立的串级控制系统由主副两个控制回路组成,每一个回路又有自己的调节器和控制对象。

主回路中的调节器称主调节器,控制主对象。

副回路中的调节器称副调节器,控制副对象。

主调节器有自己独立的设定值R,他的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数c2.通过针对双容水箱液位被控过程设计串级控制系统,将努力使系统的输出响应在稳态时系统的被控制量等于给定值,实现无差调节,并且使系统具有良好的动态性能,较块的响应速度。

相关主题