光电材料
用紫外线激发发光材料时,可得到可见光区域的各 种颜色的光。
用蓝光激发,只能得到红光、橙光,至多是绿光。
若周围环境的振动能比较高,而发光中心的激发态所 处的振动能级比较低,此时发光中心有可能得到一部 分振动能而升到比较高的激发态。从激发态到基态的 跃迁所伴随的发光的能量就比激发能量高,发光的波 长比激发光的波长短,称为反斯托克斯发光。
6
发光材料分类(按激发方式来分)
光致发光材料 电致发光材料
发光材料在光(紫外光、红外光、可见光等) 照射下激发发光。
发光材料在电场或电流作用下的激发发光。射线致发光材料 发光材料在电子束或其它射线束的轰击下
的激发发光。
热致发光材料 发光材料在热作用下的激发发光。
等离子发光材料 发光材料在等离子体的作用下的激发发光。
激光致冷就是利用反斯托克斯现象不断将物体的振动
能以光的形式发射出去,使物体温度降低。
10
当激发发光体后,发光将逐渐衰减,直至发光消失。随后,
热释发光 逐渐升高发光体的温度,有的发光材料又会逐渐发光,并逐 渐变强,在某一温度时达到最大值后又逐渐变弱,这种变化 随着温度的上升,可以重复几次,直到高温时发光才消失。
(1) (2) (3)
(1)导带电子与俘获的空穴 复合
(2)俘获的电子与价带的空 穴复合
(3)激发能传给孤立中心, 发光跃迁在分立的中心内部
(4)导带中的电子直接与价 带中的空穴复合
(5)俘获的电子与俘获的空 穴复合
9
斯托克斯规则
发光波长总是大于激发波长。即发光的光子能量必 然小于激发光的光子能量。
量子效率:发光的量子数与激发源输入的量子数的比值。 能量效率(功率效率):发光的能量与激发源输入的能量的比值。 流明效率(光度效率):发光的流明数与激发源输入的能量的比值 (lm/W)。
3. 发光持续时间特征
5
规定当激发停止时,其发光亮度L衰减
发光持续时间特征 到初始亮度L0的10%时所经历的时间
发到3F2能级,由于 3F2、3F3、3H4相距很 近,电子很快弛豫到
3H4。在此,它可能 吸收第2个光子跃迁
至1D2;也可能跃迁 到基态或3F4发出红 外光。3F4上的电子 吸收第2个光子跃迁
到1G4,1G4上的电子 吸收第3个电子跃迁
到3P1,然后弛豫到
Tm:铥 1I6,再…
13
吸收雪崩
该现象易发生在基态对激发光的吸收比 激发态弱,而且离子间相互作用强的体 系中。
7
光致发光材料
发光过程
(1) 基质晶格或激活剂(或称发光中心)吸收激发能; (2) 基质晶格将吸收的激发能传递给激活剂; (3) 被激活的激活剂发出一定波长的光而返回基态,同
时伴随有部分非发光跃迁,能量以热的形式散发。
A:激活剂 S:敏化剂(能强烈地吸 收激发能,然后将能量传递给激活剂)8
(4) (5)
11
上转换发光
如果一个激发光光子产生 一个发射光光子,发射光 子的能量必然不会大于激 发光光子的能量。
如果发光材料能够吸收两 个或多个光子而产生一个 光子,可能发射出波长短 的光,这种现象称为上转 换发光。
上转换发光可以由激发态 吸收或连续能量传递产生。
12
例:
上转换发光的激
发过程:
第1个光子将电子激
光电材料
1
10.1 发光材料
光的发射是物体中电子从高能态到低能态的跃迁产生的, 物体要发光,首先就得使物体中的电子处于高能态。
以某种方式将能量传递给物体使电子提升到一定高能态 的过程,称为激发过程。 发光就是将所吸收的激发能转化为光辐射的过程。
发光与激发方式无关
对应于不同的吸收能量来源: 物理能、机械能、化学能、生物能等
在材料的禁带中,存在着不同深度的陷 阱。在激发过程中,有的电子就掉进了 这些深度不同的陷阱。陷阱中的电子回 到导带的几率为:
若温度T大,则P大,即导带中的电子数 目增多,复合的次数增多,发光增强。 陷阱中的电子数目是有限的,这些电子 耗尽了,即使继续升温,也没有可以参 与复合的电子,因此不再发光。 陷阱可有不同深度,使电子释放出来所 需的温度就有高有低。
由于基态吸收比较弱,开始时 激发态E1上的电子数不多,达 到E2上的电子也不多,上转换 发光较弱。
但处于激发态E2的离子和处于 基态G的另一个离子相互作用, 发生交叉弛豫,A离子E2上电 子跃迁到E1,同时B离子基态 的电子跃迁到E1,导致E1的电 子数增加了2个。此过程使E1 上的电子数目倍增,于是,从 E上1跃转迁换到发E光2的加电强子。数目也倍增1,4
相应地有: 物理发光、机械发光、化学发光、生物发光等。2
材料的发光机理
分立中心发光 复合发光
激发态能级 俘获能级 (陷阱)
基态能级
自发发光:受激发的粒子 (如电子),受粒子内部 电场作用从激发态A而回 到基态G时的发光。 受迫发光:受激发的电子 只有在外界因素的影响下 才发光(亚稳态发光)。
分立中心发光
短复合发光,单分子过程,<10-10s 长复合发光,双分子过程
4
材料的发光特征
1. 颜色特征
不同的发光材料有着不同的发光颜色。
2. 发光强度特征
发光强度代表发射光的能量,是一个客观数值;发光的亮度是人眼的 感觉,是主观判断的结果,其中包含了眼睛对不同颜色视觉的差别。 发光效率用来表征材料的发光本领。
为余辉时间,简称余辉。
人眼能够感觉到余辉的长发光期间者为磷光;
人眼感觉不到余辉的短发光期间者为荧光。
短于10-8s的称为荧光,长于10-8s的称为磷光。
极短余辉:余辉时间<1s的发光; 短余辉: 余辉时间1~10s的发光; 中短余辉:余辉时间10-2~1ms的发光; 中余辉: 余辉时间1~100ms的发光; 长余辉: 余辉时间10-1~1s的发光; 极长余辉:余辉时间>1s的发光
发光材料的发光中心受激发 时并未离化,发光过程全部 局限在中心内部。被激发的 发光中心内的电子虽然获得 了跃迁至激发态的能量,但 并未离开中心,迟早会释放 出激发能,回到基态而发出 光来。
这种发光是单分子过程,并 不伴随有光电导,故又称为 “非光电导型”发光。 3
复合发光
发光材料受激发时分离出一对带异号电荷的粒子,一 般为空穴和电子,这两种粒子复合时便发光,称为复 合发光。 由于离化的带电粒子在发光材料中漂移或扩散,从而 构成特征性光电导,故又称为“光电导型”发光。