实验六 分光光度法测的配合物的稳定常数一、目的与要求1.掌握连续法测定配合物组成及稳定常数的方法; 2.掌握分光光度计的使用方法; 3.用分光光度法中的连续变化法测的Fe +3与钛铁试剂形成配合物的组成及稳定常数。
二、预习与思考1.了解连续法测的配合物组成及稳定常数的基本原理; 2.预习7200型分光光度计的构造原理和使用方法; 3.思考(1) 怎样求配位数n ?如何计算配合物稳定常数?(2) 测定λmax 的目的是什么?如何决定配合物最大吸收波长? (3) 使用分光光度计时应注意什么?比色皿大小如何选择? 三、实验原理溶液中金属离子M 和配位体L 形成配合物,其反应式为:n ML nL M −→←+当达到络合平衡时:n ML n M LC K C C=(6.1)式中:K 为配合物稳定常数;C M 为络合平衡时金属离子的浓度(严格应为活度);C L 为络合平衡时的配位体浓度;C MLn 为络合平衡时的配合物浓度;n 为配合物的配位数。
配合物稳定常数不仅反映了它在溶液中的热力学稳定性,而且对配合物的实际应用,特别是在分析化学方法中具有重要的参考价值。
显然,如能通过实验测得公式(6.1)中右边各项浓度及n 值,则就能算得K 值。
本实验采用分光光度来测定上列这些参数。
1. 分光光度法的实验原理:让可见光中各种波长单色光分别、依次透过有机物或无机物的溶液,其中某些波长的光即被吸收,使得透过的光形成吸收谱带。
如图П-6-1所示,这种吸收谱带对于结构不同的物质具有不同的特性,因而就可以对不同产物进行鉴定分析。
根据比尔定律,一定波长的入射光强I 0 与透射光强I 之间的关系:kcd e I I -=0 (6.2)式中:K 为吸收系数,对于一定溶质、溶剂及一定波长的入射光K 为常数,C 为溶液浓度,d 为盛样溶液的液槽的透光厚度。
由(6.2)式可得:kcd I I=0ln (6.3) cd k A I I A I I 303.2,lg ,00==则得:令称透射比。
从公式可看出:在固定液槽厚度d 和入射光波长的条件下,吸光度A 与溶液浓度c 成正比,选择入射光的波长,使它对物质既有一定的灵敏度,又使溶液中其它物质的吸收干扰为最小。
作吸光度A 对被测物质c 的关系曲线,测定未知浓度物质的吸光度,即能从A~c 关系上求得相应的浓度值,这是光度法的定量分析的基础。
4505005506006507007500.150.200.250.300.350.400.450.50Aλ / nm0.00.20.40.60.81.0Ax V图П-6-1 吸收谱带 图П-6-2摩尔分数—吸光度曲线2. 等摩尔数连续递变法测定配合物的组成连续递变法又称递变法,它实际上是一种物理化学分析方法,可以用来研究当两个组分项混和时,是否发生化合、络合、缔合等作用以及测定两者之间的化学比。
其原理是:在保持总的摩尔数不变的前提下,依次改变体系中两个组分的摩尔分数比值,并测定吸光度A 值,作摩尔分数—吸光度曲线,如图2所示,从曲线上吸光度的极大值,即能求出n 值。
为了配制溶液方便,通常取相同摩尔浓度的金属离子M 和配位体L 溶液,在维持总体积不变的条件下,按不同的体积比配成一系列混和溶液,这样,它们的体积比也就是摩尔分数之比。
设x V 为A 极大 时吸取L 溶液的体积分数。
即:LV L M V x V V =+ (6.4)M 液的体积分数为1- x V 则配位数:V V1x n x =- (6.5)若溶液中只有配合物具有颜色,则溶液的吸光度A 和的含量成正比,作A-x V 图,从曲线的极大值位置即可直接求出n 。
但在配制成的溶液中除络合外,尚有金属离子M 和配体L 与配合物在同一波长λ最大 中也存在着一定程度的吸收。
因此所观察到的吸光度A 并不是完全由配合物ML n 吸收所引起,必须加以校正,其校正方法如下:作为实验测得的吸光度A 对溶液组成(包括金属离子浓度为零和配位体浓度为零两点)的图,联结金属离子浓度为零及配位体浓度为零的二点的直线如图П-6-3所示,则直线上所表示的不同组成吸光度数值A 0 ,可以认为是由于金属离子M 和配位体L 吸收所引起,因此把实验所观察到的吸光度A '减去对应组成上的该直线读得的吸光度数值A 0 所得的差值:ΔA=A ’-A 0 ,就是该溶液组成下浓度的吸光度数值。
作此吸光度ΔA-x V 曲线,如图П-6-4所示。
曲线极大值所对应的溶液组成就是配合物组成。
用这个方法测定配合物组成时,必须在所选择的波长范围内只有ML n 一种配合物有吸收,而金属离子M 和配位体L 等都不吸收和极少吸收,只有在这种条件下,A-x V 曲线上的极大点所对应的组成才是所求配合物组成。
0.00.20.40.60.8 1.00.00.20.40.60.81.0D 0Ax VD '0.00.20.40.60.8 1.00.00.20.40.60.81.0∆Ax V图3 A x V 曲线图 图4 ∆A x V 曲线图3. 稀释法测定配合物的稳定常数设开始时金属离子M 和配位体L 的浓度分别为a 和b ,而达到络合平衡时配合物浓度为X ,则:nnX b X a X K ))((--=(6.6)由于吸光度已经过上述方法进行校正,因此可以认为校正后,溶液吸光度正比于配合物浓度,如果在两个不同的金属离子和配位体总浓度(总摩尔数)条件下,在同一坐标上分别作吸光度对两个不同总摩尔分数的溶液组成曲线,在这二条曲线上找出吸光度相同的二点,如图П-6-5所示则在此二点上对应的溶液的配合物浓度应相同。
设对应于二条曲线上的起始金属离子浓度及配位体浓度分别为a 1、b 1,a 2、b 2 。
则:nn nX b X a X nX b X a X K ))(())((2211--=--=(6.7) 解上述方程可得X ,然后即可计算配合物稳定常数K 。
0.00.20.40.60.8 1.00.00.20.40.60.8I∆Ax VII图П-6-5 吸光度—溶液组成图四、仪器与药品仪器:7200型分光光度计;pH 计;试剂:0.0025M 硫酸高铁铵溶液(在1L 溶液中含有2N H 2SO 4 4mL );0.0025M 钛铁试剂(1.2—三羟基—3.5二磺酸钠);pH=4.6的醋酸—醋酸钠缓冲溶液。
五、实验步骤1.按1升溶液含有100g 醋酸铵及100mL 冰醋酸方法配制醋酸—醋酸铵缓冲溶液100mL 。
2.按下表制备11个待测溶液样品,然后依次将各种样品加水稀释至50mL 。
3.用100mL 容量瓶,然后按上表制备第二组待测溶液样品。
4.测上述溶液的pH 值(只选取其中任一样品即可)。
因为硫酸高铁铵与钛铁试剂生成的配合物组成将随pH 改变而改变,故所测配合物溶液需维持pH=4.6。
5.ML n 溶液分光光度曲线—λmax 的选择。
按照[Fe(Ti)2]组成配制溶液如下:取0.005M 硫酸高铁铵溶液3.3mL ,0.005M 钛铁试剂溶液6.7mL,加入缓冲溶液25mL,然后稀释至100mL(维持pH=4.6)把溶液装在1cm 的比色皿内。
先选择某一波长λ,仪器经调0%T后,用蒸馏水调整仪器的100%T(仪器的使用方法参见第三部分第四章),再测溶液吸光度。
测毕后,改变波长λ,重复上述操作程序。
测定该溶液的吸收曲线,找出吸收曲线的最大吸收峰所对应的波长λmax 数值,再取第一组溶液中1号和11号溶液测定λmax下的吸光度数值A,若A值等于零,则λmax 即为所求。
[注]:Ti指钛铁试剂。
6.测定第一组及第二组溶液在波长λmax 下的吸光度数值。
六、实验注意事项1.仪器连续使用不应超过两个小时,若使用时间较久,则中途需歇半小时再使用。
2.比色皿每次使用完毕后,应用蒸馏水洗净,倒置晾干,在日常使用中应注意保护比色皿的透光面,使之不受损坏和产生斑痕,影响它的透光率。
3.FeNH4(SO4)2 溶液易水解,在配制溶液时,稀释前需加1~2滴浓硫酸以防水解。
4.若M、L在λmax 有吸收,应对吸收度A进行校正后,再作A'~[M]/[L]曲线。
七、数据记录和结果处理1.作二组溶液的吸光度A对溶液组成的A-x曲线;2.按上述方法进行校正,求出二组溶液中配合物的校正吸光度数值(ΔA=A—A0);3.作第一组溶液校正后的吸光度(ΔA)对溶液组成的图(即ΔA-x);4.找出曲线最大值下相应于x V /(1—x V)=n的数值,由此即可得到配合物组成ML n ;5.将第一、第二两组溶液校正后的吸光度(ΔA)数值对溶液组成作图于同一坐标系;6.从上图读出二组溶液中任一相同吸光度下二点所对应的溶液组成(即a1、a2、b1、b2 数值);7.根据方程式(6)求出X数值;8.从X数值算出配合物稳定常数。
八、问题与讨论1.为什么只有在维持[M]+[L]不变的条件下改变[M]和[L],使[L]/[M]=n时配合物浓度才达到最大?4.在两个[M]+[L]总浓度下作吸光度对[L]/ ([M]+[L])的两条曲线,为什么在这两条曲线上吸光度相同的两点所对应的配合物浓度相同。
5.为什么需控制溶液的pH值?配制硫酸高铁铵溶液为要加入适量的硫酸?6.从测定值误差估算K的相对误差;K与哪些因素有关?九、应用配合物是现今化学界较感兴趣的研究对象之一。
应用分光光度法不仅可以测定配合物的稳定常数,还可以测定配合物的组成。
它既能用来研究双组分配合物,又能研究三组分配合物;既能研究生成单一配合物的反应,还能研究同时生成不同配位的络合反应。
利用分光光度法测定配合物的方法除连续递变法外还有摩尔比率法、直线法、等摩尔系列法、斜率比法、平衡移动法。
同时分光光度法也可用来测定有机化合物的分子量和分子结构;在动力学方面用此法测定反应速率。