摘要在微小型履带机器人方面美国走在了世界的前列,代表机器人有Packbot机器人,Talon机器人,NUGV等。
我国微小型机器人的研究和开发晚于西方的一些发达国家,我国是从20世纪80年代开始机器人领域的研究的。
其中具有代表性的有中国科学院研制的复合移动机器人“灵晰-B”型排爆机器人,“龙卫士Dragon Guard X3B 反恐机器人”,“JW-901 排爆机器人”等。
此设计的目的设计结构新颖,能实现过坑、越障等动作。
通过在机器人机架上加装其他功能的模块来实现不同的使用功能,本研究的意义是为机器人提供一个动力输出平台,为开发各种功能的机器人提供基础平台。
此设计移动方案的选择是采用了履带式驱动结构。
结构整体使用模块化设计,以便后续拆卸维修,可以适应于各种复杂的路面,并可主动控制前后两侧摇臂的转动来调节机器人的运动姿态,从而达到辅助过坑、越障等动作。
经过合理的设计后机器人将具有很好的环境适应能力、机动能力并能承受一定的掉落冲击,此设计的移动机构主要由四部分组成:主动轮减速机构、翼板转动机构、自适应路面执行机构、履带及履带轮运动机构。
关键词:履带机器人;履带移动机构;模块化设计AbstractIn terms of micro small crawler robots walk in the forefront of the world in the United States, on behalf of the robot has disposal robot, Talon robot, NUGV, etc. Miniature robot research and development in our country later than some developed western countries, our country from the 1980 s began to research in the field of robot. One of the typical composite mobile robot developed by the Chinese academy of sciences \"norm of spirit - B\" type eod robots, \"Dragon Guard Dragon Guard X3B anti-terrorism robot\", \"JW - 901 eod robot\", etc.The design is novel, the purpose of this design can achieve pit, surmounting obstacles. Through in the robot arm with other function modules to realize different use function, the significance of this study is to provide a power output for robot platform, provides the basis for the development of all sorts of function of robot platform.This design is the choice of mobile solutions adopted crawler drive structure. Structure of the overall use of modular design, in order to follow-up maintenance, removal can be adapted to various complicated road, and can turn on either side of the rocker arm before and after active control to regulate the robot's motion, so as to achieve auxiliary pit, surmounting obstacles. After reasonable design robots will have good environmental adaptability, mobility and can absorb a certain amount of drop impact, this design of the mobile mechanism is mainly composed of four parts: the driving wheel deceleration institutions, wing rotating mechanism, adaptive pavement actuators, track and track wheel motion mechanism.Keywords: tracked robot; tracked mobile mechanism;the modular design目录摘要 (1)1 引言 (4)2 履带机器人的现状及发展 (5)3 履带机器人的运动特性 (8)4 本研究采用的行走机构 (11)4.1 行走机构的选择 (11)4.2 履带机器人的功能、性能指标与设计 (12)4.3 主要机构的工作原理 (13)5 机器人越障分析 (14)5.1 跨越台阶 (14)5.2 跨越沟槽 (15)5.3 斜坡运动分析 (16)6 机器人移动平台主履带电机的选择 (18)6.1 机器人在平直的路上行驶 (18)6.2 机器人在30°坡上匀速行驶 (19)6.3 机器人的多姿态越阶 (20)7 移动机构的分析及其选择 (22)7.1 典型移动机构分析 (22)7.2 本研究采用的移动机构 (26)8 履带部分设计 (27)8.1 履带的选择 (27)8.2 确定主从动轮直径 (30)8.5 功率验算 (37)8.6 同步带的物理机械性能 (37)8.7 履带主从动轮设计 (38)8.8 副履带部分设计 (41)9履带翼板部分设计 (46)9.1 履带翼板的作用 (46)9.2 履带翼板设计 (46)10 计算履带装置的重心及其各部件重心 (48)10.1 主履带的重心计算 (48)10.2 副履带的重心计算 (53)10.3 主履带及其摇臂也就是副履带总部分的重心计算 (54)总结 (55)致谢 (56)参考文献 (56)1 引言随着社会的发展,我们面临的自身能力、能量的局限越来越多,所以我们创造了各种类型的机器人来辅助或代替我们完成任务。
履带式机器人包括侦察机器人、巡逻机器人、爆炸处理机器人、步兵支援机器人以及复杂环境下搜救机器人等,用来代替我们进入危险环境下完成一些如侦查、搜集资料、救援等工作,从而减少了我们工作的危险系数,在我们未来的生活与工作中起到非常重要的作用。
民用履带式机器人被广泛用于工业生产等各种服务领域,如生产线传输、清扫、导盲和搜救复杂环境下的资料等各个方面。
但我国对机器人研究起步较晚,大多数尚处于某个单项研究阶段,主要的研究项目有:清华大学智能移动机器人于1994年通过鉴定,还有上海交通大学的地面移动消防机器人已投入使用。
北京理工大学、南京理工大学等单位承担的总装项目“地面军用机器人技术”研究是以卡车、面包车作为平台的,是大型智能作战平台。
中国科学院沈阳自动化研究所的AGC和防爆机器人,中国科学院自动化自行设计、制造的全方位移动式机器人视觉导航系统,哈尔滨工业大学于1996年研制成功的导游机器人等。
2 履带机器人的现状及发展20世纪60年代到70年代,想到工业机器人印入脑海的便是自动机械手。
机器人移动功能的大力研究和开发是20世纪80年代以后才开始,现在作为移动机器人而研制的移动机械类型已远远超过了机械手。
尤其是履带式机器人,不仅是生物体中没见过的移动形态,而且能够在复杂的环境下行进。
履带式机器人因采用履带式传动而得名。
其最大特征是将圆状的循环轨道履带套在若干车轮上,使车轮不与地面直接接触,利用履带缓冲地面带来的冲击,使机器人能够适应各种路面状况。
目前六履带摆臂式搜救机器人还是局限于单个或两个自由度。
其主要由机械本体、控制系统、导航系统等部分组成。
六履带摆臂式搜救机器人的研究涉及以下几个方面,首先是移动方式的选择,对于履带式移动机器人,可以是两履带式、四履带式、六履带式等。
其次,考虑驱动器的控制,以使机器人达到期望的功能。
再者,必须考虑导航或路径规划,如传感信息融合,特征提取,避碰以及环境映射。
最后,考虑摆臂角的原理,这方面需要重点考虑,通过控制摇臂的角度来改变自身高度以达到越障过坑功能是这种机器人的最大特点。
对于这些问题可归结为:机械结构设计、控制系统设计、运动学与动力学建模、导航与定位、多传感器信息融合等。
下面是各国研发的一些履带式可变形机器人:(1)美国的拆弹专家:如图2-1、2-2、2-3、2-4所示,这是美国iRobot的一种较小型“PackBot”机器人,现服役于美国军队,它搭配了一个爆炸物感应系统,能有效地探测炸弹。
图2-3这种iRobot SUGV的机器人是一种小型地面探测车,重量仅为30磅。
图2-4是iRobot生产的“Warrior”机器人配备了两个全自动、自动装弹、可遥控的12杆机抢,重量为250磅。
图2-1 RackBot准备展开图2-2 RackBot伸展情况图2-3 SUGV机器人图2-4 Warrior机器人(2)德国telemax防爆机器人:仅在一两年前,德国公司出品了一款防爆机器人,现在2006年的新一代机器人已经上市了,其结构比以前的更加轻便,体积更小。
这款机器人依靠一个灵活的小型系统有了和一些大型机器人一样的功能。
图2-5 telemax行走姿势图2-6最紧凑姿势通过对国内外六履带摆臂式搜救机器人的分析,可以看出六履带摆臂式搜救机器人今后的发展有以下几个方面的趋势:(1)结构上,趋向小型、微型。
(2)运动上,趋向全方位,更灵活,更具自主性。
(3)在用途上,趋向于功能多功能化。
3 履带机器人的运动特性(1)平面运动及转弯平面运动及转弯是最基本的运动方式,当两侧的履带同向等速运动时,则表现为直线行走,当两侧履带反向等速运动可实现原地零半径回转,而不同速度同向运动可实现任意半径转向。
图3-7(a)、图3-7(b)为四摆臂履带单元同时着地,使机器人与地面的接触面积增大,可以使机器人适应松软、泥泞和凹凸不平等各种地形环境;图3-1(a)图3-1(b)图3-1(c)、图3-1(d)、图3-1(e)中当遇到小坡度的斜坡时,可直接爬坡而不必采取其他动作,从而可减少对驱动控制系统要求;图3-1(c)图3-1(d)图3-1(e)图3-1(f)为四摆臂单元向上摆到中间位置,可实现机器人小空间转向运动。