<解析IP数据报实验报告-…(目录目录 (2)1、课程设计目的 (2)2、课程设计要求 (2)<3、相关知识 (2)4、课程设计分析 (6)网卡设置 (6)使用套接字 (7)接收数据包 (7)定义IP头部的数据结构 (8)IP包的解析 (9)协议的定义 (9);捕获处理 (9)5、运行结果 (10)6、总结 (11)7、课程设计参考资料 (11)8、源程序代码 (11),/,1、课程设计目的本课程设计的目的就是设计一个解析IP数据包的程序,并根据这个程序,说明IP数据包的结构及IP协议的相关问题,从而对IP层的工作原理有更好的理解和认识。
2、课程设计要求本设计的目标是捕获网络中的IP数据包,解析数据包的内容,将结果显示在标准输出上,并同时写入日志文件。
程序的具体要求如下:1)以命令行形式运行:ipparse logfile,其中ipparse是程序名, 而logfile 则代表记录结果的日志文件。
2)在标准输出和日志文件中写入捕获的IP包的版本、头长度、服务类型、数据包总长度、数据包标识、分段标志、分段偏移值、生存时间、上层协议类型、头校验和、源IP地址和目的IP地址等内容。
3)当程序接收到键盘输入Ctrl+C时退出。
3、相关知识互联网络层是TCP/IP协议参考模型中的关键部分.IP协议把传输层送来的消息组装成IP数据包,并把IP数据包传送给数据链层.IP协议在TCP/IP协议族中处于核心地位,IP协议制定了统一的IP数据包格式,以消除个通信子网中的差异,从而为信息发送方和接收方提供了透明的传输通道.编制本程序前,首先要对IP包的格式有一定了解,图1给出了IP协议的数据包格式.-IP数据包的第一个字段是版本字段,其度是4位,表示所使用的IP协议的版本.目前的版本是IPV4,版本字段的值是4,下一代版本是IPV6,版本字段值是6.本程序主要针对版本是IPV4的数据包的解析.报头标长字段为4位,它定义了以4B为一个单位的IP包的报文长度.报头中除了选项字段和填充域字段外,其他各字段是定长的.因此,IP数据包的头长度在20—40B之间,是可变的.0 4 8 16 19 24 31图1 IP数据包的格式服务类型字段共8位,用于指示路由器如何处理该数据包.该字段长度由4位服务类型(TOS)子域和3位优先级子域组成,1位为保留位,该字段结构如图2所示.B7 b6 b5 b4 b3 b2 b1 b0图2 服务类型字段结构优先级共有8种,优先级越高表明数据包越重要.表1中列出了各种优先级所代表的意义.表一优先子域的说明在4位服务类型子域中b4,b3,b2,b1分别表示D(延迟),T(吞吐量),R(可靠性)与C(成本).表2列出了服务器类型自域的构成.总长度字段为2B,它定义了以字节为单位的数据包的总长度.IP数据包的最大长度为65535B.标识字段的长度为16位,用于识别IP数据包的编号.每批数据都要有一个标识值,用于让目的主机判断新来的数据属于哪个分组.报头中的标志字段如图7-3所示.标志字段共3位,最高位是0.禁止分片标志DF(do not fragment)字段的值若为1,表示不能对数据包分片;若DF值为0,则表明可以分片.分片标志MF( more fragment)的值为1,表示接收到的不是最后一个分片;若MF值为0,表示接收到的是最后一个分片.片偏移字段共13位,说明分片在整个数据包中的相对位置.片偏移值是以8B 为单位来记数的,因此选择的分片长度应该是8B的整数倍.生存时间(TTL)字段为8位,用来设置数据包在互联网络的传输过程的寿命,通常是用一个数据包可以经过的最多的路由器跳步数来限定的.协议字段为8位,表示使用此IP数据包的高层协议类型,常用的协议号如表3所示.表3 典型的协议号'头校验和字段为16位,用于存放检查报头错误的校验码。
检验的范围是整个IP包的报头。
校验和按如下方法计算:1)将头校验和的字段置为0。
2)将报头部分的所有数据以16位为单位进行累加,累加方式是求异或。
3)将累加的结果取反码,就是头校验和。
当收到一个IP包时,要检查报头是否出错,就把报头中的所有数据以16位为单位进行累加,若累加的结果为0,则报文没有出错。
地址字段包括源地址和目的地址。
源地址和目的地址的长度都是32位,分别表示发送数据包的源主机和目的主机的IP地址。
选项字段的长度范围为0~40B,主要用于控制和测试。
在使用选项字段的过程中,有可能出现报头部分的长度不是32位的整数倍的情况。
如果出现这种情况,就需要通过填充位来凑齐。
4、课程设计分析}网卡设置为了获取网络中的IP数据包,必须对网卡进行编程,在这里使用套接字(socket)进行编程。
但是,在通常情况下,网络通信的套接字程序只能响应与自己硬件地址相匹配的数据包或是以广播形式发出的数据包。
对于其他形式的数据包,如已到达网络接口,但却不是发送到此地址的数据包,网络接口在骓投递地址并非自身地址之后将不引起响应,也就是说应用程序无法收取与自己无关的数据包。
我们要想获取网络设备的所有数据包,就是需要将网卡设置为混杂模式。
使用套接字套接字分为三种,即流套接字(Stream socket)、数据报套接字(Datagram Socket)和原始套接字(Raw Socket)。
要进行IP层数据包的接收和发送,应使用原始套接字。
创建原始套接字的代码如下:Socket sock;sock = socket(AF_INET,SOCK_RAW,IPPROTO_IP);本设计不用考虑超时情况。
创建套接后,IP头就会包含在接收数据包中。
然后,我可以设置IP头操作选项,调用setsockopt函数。
其中flag设置为true,并设定IP-HDRINCL选项,表明用户可以亲自对IP头进行处理。
最后使用bind()函数将socket绑定到本地网卡上。
绑定网卡后,需用WSAIoctl()函数把网卡设置为混杂模式,使网卡能够接收所有的网络数据。
如果接收的数据包中的协议类型和定义的原始套接字匹配,那么接收的数据就拷贝到套接字中,因此,网卡就可以接收所有经过的IP 包。
,接收数据包在程序中可使用recv()函数接收经过的IP包。
该函数有四个参数,第一个参数接收操作所用的套接字描述符;第二个参数接收缓冲区的地址;第三个参数接收缓冲区的大小,也就是所要接收的字节数;第四个参数是一个附加标志,如果对所发送的数据没特殊要求,直接设为0。
因为IP数据包的最大长度是65535B,因此缓冲区的大小不能小于65535B。
设置缓冲区后,可利用循环来反复监听接收IP包,用recv()函数实现接收功能。
定义IP头部的数据结构程序需要定义一个数据结构表示IP头部。
其代码如下:/* 定义IP头部数据结构 */typedef struct _IP_HEADER{union{BYTE Version; 载 Winsock;]2.创建一个接收原始IP包的socket连接;3.绑定到一个接口;4.进行WSAIoctl设置,接收所有的IP数据包。
代码如下:if (WSAIoctl(s, dwIoControlCode, &optval, sizeof(optval),NULL, 0, &dwBytesRet, NULL, NULL) == SOCKET_ERROR)5.接着设定一个线程进行捕获:(1)创建一个接收IP包的链表头;(2)设置一个标识,为真,则不断进行IP包的捕获;(3)建立一个新的结点,将捕获的数据包加入到该结点;(4)如果链表的长度达到指定的长度,创建一个线程对该链表的IP包进行解析;再设置一个在IP数据包链表不足给定的长度,而又中止IP捕获时,对链表的处理;(5)为下一个IP包链表创建一个链表头。
6.建立一个进行IP包解析并显示的线程,进行解析IP数据包,然后显示IP数据包。
5、运行结果截获IP数据包程序运行结果如下:6、总结这次计算机网络课程设计是解析IP数据包,通过这次上机充分应用了所学的计算机网络和C语言的知识,并上网搜索一部分相当资料,粗略设计出该程序。
通过本次课程设计,充分运用了所学的计算机网络知识,设计出了如何解析IP数据包,从而更加深刻的了解到了IP数据包的结构及IP协议的相关问题,从而对IP层的工作原理有更好的理解和认识。
在课程设计的过程也碰到的不少问题。
该程序也存在着不少的缺陷,比如并不是所有的数据包都能捕获,如:IP数据包以外的数据包都抓不到;只支持ICMP、IGMP、TCP、UDP这些协议。
|7、课程设计参考资料1.《计算机网络(第5版)》主编:谢希仁出版社:电子工业出版社出版时间:2009年11月2.《数据通信与网络(第四版)》吴时霖周正康吴永辉译8、源程序代码#include ""#include ""#include ""#include ""、#pragma comment(lib, "")#define IO_RCVALL _WSAIOW(IOC_VENDOR,1)#define BUFFER_SIZE 65535/* 定义IP头部数据结构 */typedef struct _IP_HEADER{《union{BYTE Version; .\r\n");fprintf(file,"==================================\r\n");fprintf(file,"描述:%s\r\n",;fprintf(file,"状态:%s\r\n",;fprintf(file,"==================================\r\n");SOCKET sock;#/* 创建原始套接字 */if((sock=socket(AF_INET,SOCK_RAW,IPPROTO_IP))==INVALID_SOCKET){printf("Can not create socket!\n");return -1;}BOOL flag=true;/* 设置IP头操作选项 */|if(setsockopt(sock,IPPROTO_IP,IP_HDRINCL,(CHAR*)&flag,sizeof(flag))==SOCKET _ERROR){printf("setsockopt failed!\n");return -1;}char hostName[128];/* 获取本地主机名 */if(gethostname(hostName,100)==SOCKET_ERROR){(printf("gethostname failed!\n");return -1;}hostent *pHostIP;/* 根据主机名获取主机信息 */if((pHostIP=gethostbyname(hostName))==NULL){printf("gethostbyname failed!\n");》return -1;}printf("Hostname: %s\r\n",pHostIP->h_name);printf("IPAddress: %s\r\n",inet_ntoa(*((struct in_addr *)pHostIP->h_addr)));/* 封装IP地址信息 */sockaddr_in addr_in;=*(in_addr*)pHostIP->h_addr_list[0];`=AF_INET;=htons(6000); //监听的端口号/* 把Socket绑定到本地网卡 */if(bind(sock,(PSOCKADDR)&addr_in,sizeof(addr_in))==SOCKET_ERROR){ printf("bind failed");return -1;}DWORD dwBufferLen[10];DWORD dwBufferInLen=1;DWORD dwBytesReturned=0;/* 设置网卡为混杂模式 */if(WSAIoctl(sock,IO_RCVALL,&dwBufferInLen,sizeof(dwBufferInLen),&dwBufferLen,sizeof(dwBufferLen),&dwBytesReturned,NULL,NULL)==SOCKET_ERROR) {printf("icotlsocket failed\n");return -1;}char buffer[BUFFER_SIZE];printf("=============开始解析=============\r\n");while(true){/* 从套接字接收IP数据报 */int size=recv(sock,buffer,BUFFER_SIZE,0);if(size>0){ipparse(stdout,buffer);ipparse(file,buffer);}}/* 解除Socket绑定 */if(WSACleanup()==SOCKET_ERROR){printf("WSACleanup failed!\n");return -1;}/* 关闭文件 */fclose(file);return 0;}。