数值分析考试复习总结 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生?答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(,221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子) 例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2);1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 0)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为其中(2) 过点210,,x x x 的二次插值多项式为其中重点是分段插值:例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1) (2) 解(2):方法一. 由 Lagrange 插值公式 可得: )21()(23-=x x x L 方法二. 令由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则:误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
内积 ⎰⋅=10)()(),(dx x g x f g f计算如下内积:1)1,1(= , 21),1(=x , 31),1(2=x31),(=x x , 41),(2=x x , 51),(22=x x0),1(=f , 22),(π-=f x , 222),(π-=f x建立法方程组:(1) ⎪⎪⎩⎪⎪⎨⎧-=+=+210102)31(21021πa a a a ,得:2012π=a ,2124π-=a于是 x x P 22*12412)(ππ-=(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=++=++2210221021025141312413121031)21(ππb b b b b b b b b解得: 2012π=b , 2124π-=b , 02=b , 于是: x x P 2222412)(ππ-=. □第四章1 为什么要进行数值积分?常用哪些公式,方法? 答: 梯形复化求积公式和simpson 复化求积公式. 2: 方法好坏的判断: 代数精度 误差分析 1.代数精度的概念定义 若求积公式∑⎰=≈ni i i bax f w dx x f 0)()( (*)对所有次数m ≤的多项式是精确的,但对1+m 次多项式不精确,则称(*)具有m 次代数精度。
等价定义若求积公式(*)对m x x x ,,,,12 是精确的,但对1+m x 不精确,则(*)具有m 次代数精度。
3: 误差1 等距剖分下的数值求积公式:公式特点:节点预先给定,均匀分布,系数n iw i )1(0,=待定利用插值多项式)(x p n 近似代替)(x f ,即得插值型求积公式Newton-Cotes 公式2 给定节点数下的具有最佳逼近性质(具有最高次代数精度)的数值求积公式:Gauss 求积公式 公式特点:系数n iw i )1(0,=和节点n i x i )1(0,=均待定3 分段插值多项式)(x n φ近似代替)(x f (分段求积)复化求积公式 复化求积公式通过高次求积公式提高精度的途径不行,类似函数插值 分而治之: 分段+低次求积公式---------- 称为复化求积法 两类低次(4≤n )求积公式:1. Newton -Cotes 型:矩形、梯形、Simpson 、Cotes 公式分别称为复化矩形、梯形、辛甫生、柯特斯公式2. Gauss 型: 一点、两点、三点Gauss 求积公式称为复化一点、两点、三点Gauss 公式复化梯形公式(n T )n ab h b f x f a f h x f x f x f x f x f x f hT n k k n n n -=++=++++++≡∑-=- )],()(2)([2 )]}()([)]()([)]()({[21112110 复化辛甫生公式: (每个k e 上用辛甫生公式求积))]()(2)(4)([6)]}()(4)([)]()(4)([)]()(4)({[61111211021212321b f x f x f a f hx f x f x f x f x f x f x f x f x f hS n k k n k k n n n n +++=+++++++++≡∑∑-==---na b h -=其中,2/1-k x 为ke 的中点 复化辛甫生公式是最常用的数值求积方法。
常采用其等价形式: 复化柯特斯公式 其中,na b h -=,21-k x为],[1k k x x -的中点,41-k x ,43-k x 为],[1k k x x -的四等分的分点自适应复化求积法计算时,要预先给定n 或步长h ,在实际中难以把握因为,h 取得太大则精度难以保证,h 太小则增加计算工作量. 自适应复化梯形法的具有计算过程如下: 步1 )]()([2,,11b f a f hT a b h n +←-←← 步2步3 判断ε<-||12T T ?若是,则转步5; 步4 21,2/,2T T h h n n ←←←,转步2; 步5 输出 2T .第五章1: 常用方法:(1).直接解法:Gauss 逐步(顺序)消去法、Gauss主元素法、矩阵分解法等; (2).迭代解法:构造某种极限过程去逐步逼近方程组的解 ①.经典迭代法Jacobi迭代法、Seidel Gauss -迭代法、 逐次超松弛(SOR )迭代法等;②. Krolov 子空间的迭代法 根据A 的对称性,又分为:A 对称正定------- 共轭梯度法A 非对称--------- BICG 、 GMRes(最小残量法)③.解一类特定背景问题的迭代法 多重网格法2: 几类迭代法优缺点比较: 3: 迭代方法目标: 求解b Ax = 其中,A 非奇异。
基本思想:把线性方程组b Ax =的解x ,化为一个迭代序列极限解 关键:构造迭代序列所满足的公式:迭代格式。
构造迭代格式基本步骤:1. 将A 分裂:C B A -=:, 其中,B 非奇异 2. 构造迭代格式其中C B G ⋅=-1,称之为迭代矩阵 , b B g 1-= 其中,)(k Ax b -为)(k x 的残余向量 此时,b B g A B I G 11--=-= ,常用的迭代方法将)(ij a A =分裂为U L D A --= 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-00001,121n n n a a aL,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-0000,1112n n n a a a U,Jacobi 迭代方法若0≠ii a ,迭代格式g x G x k J k +⋅=+)()1( ① 其中 Jacobi 迭代矩阵:)(1U L D G J +=- ①式可写为分量形式 0][11)()1(≥-=∑≠=+k x a b a xnij j k j ij i ii k i, . (*1) 方法(*1)或①称为Jacobi 迭代方法. Gauss —Seidle 迭代方法若0≠ii a ,迭代格式g x G x k G k +⋅=+)()1( ② 其中,Gauss-Seidel 迭代矩阵:U L D G G 1)(--= 其分量形式][11)(11)1()1(∑∑+=-=++--=ni j k j ij i j k j ij i ii k ix a x a b a x,n i ,,2,1 =. (*2) 即,在计算新分量)1(+k i x 时,利用新值)1(+k j x ,1,,2,1-=i j 。