当前位置:文档之家› 高中物理必修2第四章 抛体运动与圆周运动 万有引力定律专题 天体运动的“四个热点”问题

高中物理必修2第四章 抛体运动与圆周运动 万有引力定律专题 天体运动的“四个热点”问题

专题天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。

如图1所示。

图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm1m2L2=m1ω21r1,Gm1m2L2=m2ω22r2②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2③两颗星的半径与它们之间的距离系为r1+r2=L(3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r1。

2.多星模型模型三星模型(正三角形排列)三星模型(直线等间距排列)四星模型图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力另外三星球对其万有引力的合力合并的引力波。

根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。

将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度【试题解析】由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。

【参考答案】BC1.(2019·吉林模拟)我国发射的“悟空”号暗物质粒子探测卫星,三年来对暗物质的观测研究已处于世界领先地位。

宇宙空间中两颗质量相等的星球绕其连线中心匀速转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测=k (k >1)。

因此,科学家认为,在两星球之间存在暗物质。

假设以两星球球心连线为直径的球体空间中均匀分布着暗物质(已知质量分布均匀的球体对外部质点的作用,等效于质量集中在球心处对质点的作用),两星球的质量均为m 。

那么暗物质的质量为( ) A.k 2-28mB.k 2-14mC.(k 2-1)mD.(2k 2-1)m【试题解析】双星均绕它们连线的中点做匀速圆周运动,令它们之间的距离为L ,由万有引力提供向心力得G m 2L 2=m 4π2T 2理论·L 2,解得T 理论=πL 2L Gm 。

根据观测结果,星体的运动周期T 理论T 观测=k ,这种差异可能是由双星之间均匀分布的暗物质引起的,又均匀分布在球体内的暗物质对双星系统的作用与一质量等于球内暗物质的总质量m ′(位于球心处)的质点对双星系统的作用相同,有G m 2L 2+G mm ′(L 2)2=m 4π2T 2观测·L 2,解得T 观测=πL 2L G (m +4m ′),所以m ′=k 2-14m 。

选项B 正确。

【参考答案】B2.(多选)为探测引力波,中山大学领衔的“天琴计划”将向太空发射三颗完全相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形的中心,卫星将在以地球为中心、离地面高度约10万公里的轨道上运行,针对确定的引力波源进行引力波探测。

如图2所示,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”。

已知地球同步卫星距离地面的高度约为3.6万公里,以下说法正确的是( )图2A.若知道引力常量G 及三颗卫星绕地球的运动周期T ,则可估算出地球的密度B.三颗卫星具有相同大小的加速度C.三颗卫星绕地球运动的周期一定大于地球的自转周期D.从每颗卫星可以观察到地球上大于13的表面【试题解析】若知道引力常量G 及三颗卫星绕地球的运动周期T 根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得到M =4π2r 3GT 2,因地球的半径未知,也不能计算出轨道半径r ,不能计算出地球体积,故不能估算出地球的密度,选项A 错误;根据G Mm r 2=ma ,由于三颗卫星到地球的距离相等,则绕地球运动的轨道半径r 相等,则它们的加速度大小相等,选项B 正确;根据万有引力等于向心力,G Mm r 2=m 4π2T 2r 解得T =2πr 3GM ,由于三颗卫星的轨道半径大于地球同步卫星的轨道半径,故三颗卫星绕地球运动的周期大于地球同步卫星绕地球运动的周期,即大于地球的自转周期,选项C正确;当等边三角形边与地球表面相切的时候,恰好看到地球表面的13,所以本题中,从每颗卫星可以观察到地球上大于13的表面,选项D正确。

【参考答案】BCD、赤道上的物体、同步卫星和近地卫星赤道上的物体、近地卫星、同步卫星的对比比较内容赤道上的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力角速度ω1=ω自ω2=GMR3ω3=ω自=GM(R+h)3ω1=ω3<ω2线速度v1=ω1R v2=GMRv3=ω3(R+h) =GMR+h v1<v3<v2(v2为第一宇宙速度)向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GM(R+h)2a1<a3<a2物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c为地球的同步卫星。

下列关于a、b、c的说法中正确的是()图3 A.b 卫星转动线速度大于7.9 km/sB.a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC.a 、b 、c 做匀速圆周运动的周期关系为T c >T b >T aD.在b 、c 中,b 的速度大【试题解析】b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G Mm R 2=m v 2R ,解得v =GM R ,代入数据得v =7.9 km/s,故A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =GM r 2得b 的向心加速度大于c 的向心加速度,即a b>a c >a a ,故B 错误;卫星c 为同步卫星,所以T a =T c ,根据T =2πr 3GM 得c 的周期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c 中,根据v =GM r ,可知b 的速度比c 的速度大,故D 正确。

【参考答案】D1.有a 、b 、c 、d 四颗卫星,a 还未发射,在地球赤道上随地球一起转动,b 在地面附近近地轨道上正常运行,c 是地球同步卫星,d 是高空探测卫星,设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图4所示,则下列关于卫星的说法中正确的是( )图4A.a 的向心加速度等于重力加速度gB.c 在4 h 内转过的圆心角为π6C.b 在相同的时间内转过的弧长最长D.d 的运动周期可能是23 h【试题解析】同步卫星的运行周期与地球自转周期相同,角速度相同,则a 和c 的角速度相同,根据a =ω2r 知,c 的向心加速度大,由GMm r 2=ma 知,c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故a 的向心加速度小于重力加速度g ,选项A 错误;由于c 为同步卫星,所以c 的周期为24 h,因此4 h 内转过的圆心角为θ=π3,选项B 错误;由四颗卫星的运行情况可知,b 运行的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C 正确;d 的运行周期比c 要长,所以其周期应大于24 h,选项D 错误。

【参考答案】C2.如图5所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,a 和b 的轨道半径相同,且均为c 的k 倍,已知地球自转周期为T 。

则( )图5A.卫星b 也是地球同步卫星B.卫星a 的向心加速度是卫星c 的向心加速度的k 2倍C.卫星c 的周期为1k 3TD.a 、b 、c 三颗卫星的运行速度大小关系为v a =v b =k v c【试题解析】卫星b 相对地球不能保持静止,故不是地球同步卫星,A 错误;根据公式G Mm r 2=ma 可得a =GM r 2,即a a a c =r 2c r 2a =1k 2,B 错误;根据开普勒第三定律r 3a T 2a =r 3c T 2c可得T c =r 3c r 3a T 2a =1k 3T a =1k 3T ,C 正确;根据公式G Mmr 2=m v 2r 可得v =GMr ,故v a =v b <v c k,D 错误。

【参考答案】C卫星(航天器)的变轨及对接问题考向卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图6所示。

图6(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力(G Mmr2<mv2r),卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.对接航天飞船与宇宙空间站的“对接”实际上就是两个做匀速圆周运动的物体追赶问题,本质仍然是卫星的变轨运行问题。

3.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v=GMr判断。

(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。

【例3】我国发射的“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。

假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()图7A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【试题解析】若使飞船与空间站在同一轨道上运行,然后飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A错误;若使飞船与空间站在同一轨道上运行,然后空间站减速,所需向心力变小,则空间站将脱离原轨道而进入更低的轨道,不能实现对接,选项B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C正确;若飞船在比空间实验室半径较小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D错误。

相关主题