2011年第31卷 有 机 化 学V ol. 31, 2011 * E-ma i l: nxwang@ma i l.iReceived December 9, 2010; revised and accepted March 10, 2011.·学术动态·钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍王乃兴(中国科学院理化技术研究所 北京 100190)摘要 钯催化的交叉偶联反应是非常实用的合成新方法. 文章给出了Heck 反应、Negishi 反应和Suzuki 反应的概念, 对其反应机理作了详细的说明, 并对其在复杂化合物和天然产物全合成中的应用作了评价. 关键词 钯催化; Heck 反应; Negishi 反应; Suzuki 反应Palladium-Catalyzed Cross-Coupling Reactions —Introduction of Nobel Prize in Chemistry in 2010Wang, Naixing(Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190)Abstract Palladium-catalyzed cross-coupling reactions provide chemists with a more precise and efficient new methodologies. The concepts of the Heck reaction and Negishi reaction as well as Suzuki reaction are given, the reaction mechanisms are proposed, and applications of these reactions in the total synthesis of natural products are commented.Keywords palladium-catalyzed; Heck reaction; Negishi reaction; Suzuki reaction2009年10月6日, 瑞典皇家科学院宣布, 美国科学家Richard F. Heck(理查德 赫克)、日本科学家Ei-ichi Negishi(根岸英一)和Akira Suzuki(铃木章)共同获得今年的诺贝尔化学奖. 美国教授Richard F. Heck, 1931年出生于美国的斯普林菲尔德, 1954年在美国加利福尼亚大学洛杉矶分校获得博士学位. 随后他进入瑞士苏黎世联邦工学院从事博士后研究, 后在美国特拉华大学任教, 于1989年退休. Richard F. Heck 现为特拉华大学名誉教授. Ei-ichi Negishi 教授是日本人, 1935年出生于中国长春, 1958年从东京大学毕业后进入帝人公司, 1963年在美国宾夕法尼亚大学获得博士学位, 现任美国普渡大学教授. Akira Suzuki 也是日本人, 1930年出生于日本北海道鹉川町, 1959年在北海道大学获得博士学位, 随后留校工作了一段时间. 1963年到1965年, Akira Suzuki 在美国普渡大学从事了两年的博士后研究工作. Akira Suzuki 于1973年任北海道大学工学系教授, 现在是北海道大学名誉教授.钯催化的交叉偶联反应是一种可靠而又实用的工具, 对有机合成具有长久和深远的影响力, 该反应得到了合成化学工作者的普遍应用.笔者于2004年在《有机反应——多氮化物的反应及有关理论问题(第二版)》的第4.13节中列举了5个较新的人名反应[1], 其中有Heck 反应、Negishi 反应和Suzuki 反应. 对其定义分别为: Heck 反应是钯催化下, 不饱和有机卤化物或三氟磺酸酯与烯烃进行的偶联反应. Negishi 反应是钯催化下的不饱和有机锌试剂和芳基或乙烯基卤化物等进行偶联的反应. Suzuki 反应是钯催化下不饱和有机硼试剂和芳基或乙烯基卤化物等进行偶联的反应. 这是钯催化的交叉偶联反应的基本概念. 最初的Suzuki 反应还需要在无氧无水的条件下来进行, 后来发展的一些反应条件已经无需无氧无水操作了.这几种钯催化的交叉偶联反应机理不尽相同, 对机1320有 机 化 学 V ol. 31, 2011理的说明也不止一种, 一些可能的机理对研究生也较难接受. 如Heck 反应, 即使一些已经出版的专门论述人名反应的专著也较为简略[2,3] Heck 本人最先提出的Heck 反应机理是应该接受的.1 反应机理1.1 Heck 反应机理目前关于Heck 反应机理描述较多, 但一些机理过于简单, 一些机理的描述很难让有机化学家接受. 笔者认为Jutand 等[4]最近在Heck 反应的专门著作中总结的Heck 反应机理最为贴切和容易接受(Scheme 1). 这个详细的反应过程实际上是Heck 首先建议的.Scheme 1理解各步过程并不困难. 关键是整个机理中左下角画箭头处, 表示出一个负氢迁移过程, 双键上的电子是由钯直接提供的.Heck 反应的机理主要分为四个步骤:(1)氧化加成. 上式催化循环的第一步是芳基卤和Pd(0)的氧化加成, Titton 报道的芳基卤和Pd 0(PPh 3)4的作用支持了氧化加成步骤的机理, Titton 还报道了芳基卤活性次序: ArI >ArBr >>ArCl.(2)烯烃插入. 氧化加成给出反式的σ芳基Pd(II)卤化物ArPdXL 2, 脱去一个PPh 3配体后与烯烃配位, 再经过烯的顺式插入, 得到σ烷基Pa(II)卤化物[5,6], 读者可以参照上述催化循环机理图.(3) β负氢消除. 上述催化循环机理图中的σ烷基Pa(II)卤化物有一个C —C 键内旋转, 结果使得β氢原子(与sp 3碳原子相连)和Pd 原子处于顺式位置, 接着产生了顺式的β负氢消除. 这个顺式的β负氢消除反应会是一个可逆的过程.(4)还原消除. 钯催化的偶联反应产物(与芳基直接相连的烯烃衍生物)游离产生以后, H —Pd(II)的卤化物再经过一个可逆还原消除过程, 再生出具有催化活性的Pd(0)的络合物. 碱性的辅助催化剂通过粗灭产生的卤化氢, 促使还原消除过程向Pd(0)络合物催化剂方向移动.Heck 不仅发现了这个钯催化的偶联反应, 而且对其机理做出了透彻的阐述. Heck 提出的氧化加成、烯烃插入、β负氢消除、还原消除这四个主要步骤在实验中都得到了证实. β负氢消除是一个重要过程, 钯提供了一对电子形成了双键. 最近认为β负氢消除通过一个顺式消除过程. 实际上Heck 反应不能仅看作交叉偶联反应, 它只是偶联反应一种.机理中涉及一些不同的Pd(0)和Pd(II)的中间体, 这些中间体的结构和活性依靠实验条件, 钯催化剂可以是Pd(0)的络合物, 如Pd(PPh 3)4, 可以是Pd(OAc)2等. 当Pd(OAc)2作为催化剂时, 需要加入1,3-二(二苯基膦基)丙基(dppp), 首先形成Pd(OAc)2(dppp), 再得到离子型络合物Pd 0(dppp)(OAc)- [7], Pd 0(dppp)(OAc)-分解得到Pd(0)络合物Pd(dppp). 1.2 Suzuki 反应机理笔者[8]曾研究过Suzuki 反应, 利用苯硼酸和2,2'-二溴-5,5'-二噻吩通过催化量的金属钯络合物Pd(PPh 3)4进行交叉偶联反应(Eq. 1).当时采用的反应条件还是无氧无水操作[8], 产物熔点是145 ℃, 产率为51%.笔者在文献的基础上[9~11], 提出了一个离子型的反应机理, 该论文发表在一个国外化学期刊上[8]. 该反应可能的机理由三个主要步骤完成的: (a)氧化加成; (b)硼试剂参与; (c)还原消除.(1)氧化加成. 反应过程中, Pd(0)被加到有机卤化物中间, 有机卤化物中的碳原子通过极性转换由原来荷正电变为荷负电, 钯原子被氧化为Pd(II) (Scheme 2). 氧化加成的过程是速率决定步骤, 反应中, 有机卤化物的活性按卤原子如下次序递减: I >Br >>C.N o. 8王乃兴:钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍1321Scheme 2(2)硼试剂参与. 接着, 硼试剂中的C —B 键异裂, 碳原子荷负电, 形成的芳基负离子与钯正离子结合为ArPdAr', 而游离出来的卤离子(X -)与硼正离子配位得到XB(OH)2 (Eq. 2).(3)消除反应. 最后是还原消除过程, 钯有机物分解, 形成新的C —C 键, 金属钯游离出来, 再与PPh 3络合, 再生出活性钯催化剂Pd(PPh 3)4, 完成了催化过程.Scheme 3笔者在当时研究苯硼酸和2,2'-二溴-5,5'-二噻吩通过Pd(PPh 3)4催化进行的交叉偶联反应, 发现该反应采用弱碱Ba(OH)2作为辅助催化剂比其它强碱反应快, 收率高, 甚至用碳酸钾代替Ba(OH)2也往往引起副产物增加. 笔者采用了甲醇和甲苯(V ∶V =1∶1)的混合溶剂. 就溶剂效应而言, 甲醇溶剂对反应有利. 在反应过程中的氧化加成阶段, 甲醇产生的烷氧基负离子MeO -能够置换配位在钯上的卤负离子, 容易生成ArPdOR 中间体(Scheme 4).Scheme 4RPdOMe 的形成被认为是一个重要的中间体, 曾被分离得到过[12,13]. 1.3 Negishi 反应机理笔者曾制备了有机锌试剂[8], 采用一锅反应方法, 利用溴锌苯和2,5-二溴噻吩通过催化量的金属钯络合物Pd(PPh 3)4进行交叉偶联反应(Scheme 5).Scheme 5与Suzuki 反应相比, 利用Negishi 反应合成目标化合物, 产率没有Suzuki 反应高[8,14].Negishi 反应的机理与Suzuki 反应非常类似, 也是通过氧化加成、有机锌试剂(亲核试剂)参与和还原消除的三个主要步骤进行的, 下面用离子反应历程作以描述(Eq. 3, Schemes 6, 7):(1)氧化加成Scheme 6(2)有机锌试剂参与(3)消除反应Scheme 7Pd(0)游离出来, 再与PPh 3络合再生出催化剂Pd(PPh 3)4, 完成了催化循环.另外需要说明的是, 交叉偶联反应有许多种, 一些虽然没有得到诺贝尔化学奖, 但应用价值还是比较高, 例如Songashira 反应. Sonogashira 反应是钯配合物催化的卤代芳烃或者卤代烯烃与末端炔烃的交叉偶联反应, 它是一种合成芳炔、烯炔和炔酮等化合物的有效方法. 其反应如Eq. 4.Sonogashira 反应的本质是PdCl 2与CuI 复合催化剂催化末端炔烃与碘、溴代芳或者烯烃的交叉偶联反应. 2007年发表在Chem. Rev.上的Sonogashira 反应机理, 说明了铜盐作为助催化剂的过程, 是一个容易接受的机理(Scheme 8)[15].铜盐作为助催化剂的作用一些文献也作了报道[16]. 近年来Sonogashira 反应的应用报道较多, 读者可以参考相关文献[17~19].2 结束语Heck 反应、Negishi 反应和Suzuki 反应, 代表了钯催化的交叉偶联反应的最高成就, 反应非常新颖独特,1322有机化学V ol. 31, 2011Scheme 8确实在有机合成方法学的最前沿取得了重大突破, 这些原创性的成就卓有建树, 这些新方法首先在有机合成领域得到了普遍应用, 对发展有机合成的策略和技巧产生了长久和深远的影响.人类健康对特效新药的发展不断提出更高的要求, 天然产物作为先导药, 在这方面寄托了人们的无限期望[20]. 近年来, 海洋天然产物的生物医学活性引起了人们的高度重视. 海绵、珊瑚以及海洋微生物的次生代谢的天然产物, 结构新颖而活性显著, 已经成为人们挖掘具有自主知识产权的创新先导抗肿瘤等新药的战略新领域. 人工全合成这类复杂的化合物和天然产物对人类来说是一种艰难的挑战, Heck反应、Negishi反应和Suzuki反应的新方法无疑在这方面会发挥出巨大的作用.近年来, 围绕Heck反应、Negishi反应和Suzuki反应, 化学家发展了一些新的反应方法和条件, 如Ni代替Pd进行催化的交叉偶联反应. Iyer等[21]报道了Cu催化(CuI催化剂)的Heck反应, 相对Pd和Ni催化剂更为经济. 最近, Darcel等[22]报道了Fe催化的Suzuki反应, 产率较高. Nakamura等[23]不久前报道了Fe催化的Negishi 反应, 产物收率高且有立体专一性. 反应条件已经从开始需要无氧无水操作到现在可以在水相反应体系中进行. Chao等[24]报道了在水合溶剂中进行Suzuki反应的研究结果, 产物能够获得中等以上的收率. Bach等[25]在Tetrahedron的一篇文章中(其参考文41), 对笔者关于Suzuki反应和Negishi反应的报道作了一些介绍. 相信以后还会有一些新的关于催化的交叉偶联反应的研究论文不断发表出来.Heck不仅开创了著名的Heck反应, 而且他提出的有机化学反应机理也非常之透彻和精到, 可见他的有机化学之功底和对该方法的深刻的理解. 可是, Heck在完成Heck反应研究之后, 一度连科研经费都没有, 甚至不得不离开科学界. 笔者刚在德国应用化学刊物(Angew. Chem. Int. Ed. 2010,49, 2092)看到一篇关于德国合成化学教授H. Kunz的作者介绍, H. Kunz教授列出了他的五篇文章, 其中第二篇文章发表在Tetrahedron 上, 第三篇发表在Synthesis上. 笔者在中国科学院研究生院为硕博连读生讲授“有机反应”专业课, 学生对Heck反应、Negishi反应和Suzuki反应的兴趣非常浓厚. 希望年青一代的学者, 通过研究和借鉴Heck反应、Negishi反应和Suzuki反应, 提升我国在有机合成方法学方面的整体水平.在这篇简介文章结束时, 笔者再介绍几篇关于钯催化的交叉偶联反应的代表性综述文章. 一篇是Suzuki本人1995年在Chem. Rev.上的综述[26], 希望有兴趣的读者参阅. 另外3篇对相关钯催化的交叉偶联反应最新进展作了详细综述[27~29], 希望读者特别是青年学者能够继续深入学习和掌握这一研究领域. 最近, Suzuki和Negishi[30~31]还分别发表了他们的诺贝尔化学奖获奖演说. 就在这篇文章付印之际,作者又读到了一篇最新的关于非对映选择性的Negishi反应的论文, 该方法为此类反应的立体控制开拓了又一个新生面[32]. References1 Wang,N.-X. Organic Reac tions—The Reac tion of Polyni-trogen Compounds and Some Theoretic Questions, 2nd ed., Chemical Industry Press, Beijing, 2004, pp. 165~171 (in Chinese).(王乃兴, 有机反应—多氮化物的反应及有关理论问题(第二版), 化学工业出版社, 北京, 2004, pp. 165~171.)2 Li, J. J. Name Reactions, Springer, New York, 2006, p. 285.3 Kürti, L.; Czakó, B. Strategic Applications of Named Reac-tions in Organic Synthesis, Elsevier Academic Press, 2005, p. 196.4 Jutand, A. In The Mizoroki-Hec k Reac tion, Ed.: Oestreich,M., Wiley, United Kingdom, 1999, pp. 1~5.5 Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc.1974, 96, 1133.6 Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 43, 2941.7 Kozuch, S.; Shaik, S.; Jutand, A.; Amatore, C. Chem. Eur. J.2004, 10, 3072.8 Wang,N.-X. Synth. Commun. 2003, 33, 2119.9 Anderson, C. B.; Burreson, B. J.; Michalowski, J. T. J. Org.Chem. 1976, 41, 1990.10 Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619.11 Aliprantis, A. O.; Canary, J. W. J. Am. Chem. Soc. 1994,116, 6985.12 Yoshida, T.; Okano, T.; Otsuka, S. J. Chem. Soc., DaltonTrans. 1976, 993.13 Grushin, V. V.; Alper, H. Orgnometallics1993, 12, 1890.14 Wang,N.-X. Chin. . Chem. 2004, 24, 350 (in Chi-N o. 8 王乃兴:钯催化的交叉偶联反应——2010年诺贝尔化学奖获奖工作介绍1323nese).(王乃兴, 有机化学, 2004, 24, 350.)15 Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.16 Doucet, H.; Hierso, J. C. Angew. Chem., Int. Ed. 2007, 46,834.17 Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003,42, 5993.18 Saha, D.; Dey, R.; Ranu, B. C. Eur. J. Org. Chem. 2010,6067.19 Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J.Angew. Chem., Int. Ed. 2005, 44, 6951.20 Harmata, M. Strategies and Tac tic s in Organic Synthesis,Elsevier, Oxford, 2010.21 Iyer, S.; Ramesh, C.; Sarkar, A.; Wadgaonkar, P. P. Tetrahe-dron Lett. 1997, 38, 8113.22 Bźziera, D.; Darcela, C. Adv. Synth. Catal. 2009, 351, 1732.23 Hatakeyama, T.; N akagawa, N.; N akamura, M. Org. Lett.2009, 11, 4496.24 Cho, S. Y.; Kang, S. K.; Ahn, J. H.; Ha, J. D.; Choi, J. K.Tetrahedron Lett. 2006, 47, 5237.25 Schröter, S.; Stock, C.; Bach, T. Tetrahedron2005, 61,2245.26 Norio Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.27 Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem.Rev. 2006, 106, 4622.28 Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,1461.29 Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41,1486.30 Suzuki, A. Angew. Chem., Int. Ed.2011, 50, 6723.31Negishi, E. Angew. Chem., Int. Ed.2011, 50, 6738.32 Seel, S.; Thaler, T.; Takatsu, K.; Zhang, C.; Zipse, H.;Bernd, F.; Straub, B. F.; Mayer, P.; Knochel, P. J. Am. Chem.Soc. 2011, 133, 4774.(Y1012093 Li, L.)。