光纤接入技术网络结构及其优势简介一、通信光纤起源于PPB级的超净材料1960年,梅曼(T.H.Maiman)发明了红宝石激光器产生单色相干光使利用光调制进行通信成为可能。
后来利用氦氖激光器通过大气传输一路彩色电视。
但大气运输受到气候变化温度不均等严重干扰又必须使收发两端直线可见在地球上实在不太方便。
它却在星际空间通信测量,显示了优势。
1966年,英籍华人高锟(C.K.Kao)和Hockham预见利用纯净的玻璃可以制成衰减减小于20dB/km的通信光导纤维(简称光纤)。
当时无人相信德国的光学权威认为它是空想。
但当时在Bell实验室主席深知高纯度二氧化硅的人工合成石英可利用当时集成电路基材的超纯的硅系试剂来制得。
在康宁公司与英国电话研究所的合作下,利用PPb级的Sicl4等试剂于1970年首次试制成衰减小于20dB/km的石英光纤。
开启了光纤通信时代的大门,为知识经济时代的通信网络找到了一种可以足足用上半个世纪以上的新型通信线材。
37年后在遥远的东方,在中国又在重新热烈讨论如何利用天然气,空分的“尾气”来筹建超净光纤材料生产基地事宜,真可称为历史神奇的螺旋上升的奇迹。
所幸的是经过30多年的探索,我国光纤光缆工作已回归认识到光纤原材料的重要性,江南xx公司已于西南以高新开发区还签订了协议共同打造世界级光纤材料生产基地。
让我们预祝他们合作成功,为国争光。
光缆的发展同样起源于新材料的应用。
尽管光缆的发展初期借鉴的应用了许多通信电缆的材料,但至今已全套更新移植到80年代后新开发的光缆专用材料,无论是光纤的UV一次被覆涂料,光纤触变型油膏,PBT二次被覆料,不锈钢二次被覆料,玻璃钢的无金属加强芯……甚至是钢塑复合带,今天都是为光缆“量身定做”的专用料。
离开了它们光缆无法制造。
二、光缆结构及工艺的发展按高级汉语词典通俗的解释:“光缆OpticalfiberCable是由许多根经过技术处理的光学纤维组合而成的缆,用来传送光信号”。
该定义比较粗糙,1982年在“通信电缆”一书中提出了更准确的定义:“光缆是为了满足光学、机械或环境的性能规范而制造的,它是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件”。
根据上述定义可引伸出光缆设计制造的三要素:即:1)保持光纤传输参数的稳定。
2)保证在使用场合下设计的工作寿命期内各种机械性能可靠,耐环境性能稳定。
3)确保光缆在制造、施工、接续、运行、维护的总体经济性。
早期的通信光缆是借用和模仿原有通信电缆的结构与工艺。
电线电缆通常是用“拉、包、绞”三种结构工艺的巧妙结合在历史上已形成200多系列,上千万种品种,数百万个规格的大类产品。
光缆技术的发展汲取了电缆技术的精华,并根据光纤(特别是石英光纤)的特性创新发展成具有明显特征的一门新技术。
2.1 保持光纤传输参数的稳定光纤在传输原理上来看,有别于对称、同轴两大类通信电缆,它是一种传送光波(101 3~1014赫芝)的弱导介质波导。
在宏观的物理现象分析上可采用全反射原理。
即可将光看成是由光子组成的光(粒)子流,将各种外力、温度……的作用看成光子与声子的相互作用。
光纤既然是一种弱导介质波导,而且这种尺寸较小的介质波导在外力的作用下波导结构(芯层与包层的界面)很容易产生形变,因而会导致传输参数的变化,造成拉细、微弯、宏弯等现象,从而引起附加衰减的产生和色散的变化。
实际上在许多应用场合,石英光纤本身又是一种很灵敏的分布式传感器,它能显示出±0.01℃及约数百Pa级的微应力变化。
简而言之,就是要设法在短期外力作用下光纤应力小于允许值,在长期来看对光纤的各种应力应趋近于零。
鉴于在电缆中的导体通常都能承受相当大的抗拉强度,当导体材料未超过屈服强度时,导电性能不会有显著的变化,所以电缆中的拉力往往靠缆芯中的导体来承受。
只存在有特大抗拉力或其他外力要求场合下再用铠装来承受部分拉力。
而光缆则不然,光缆中的光纤一旦受到拉力的作用就会引起应变,首先导致色散的增加,接着就会引起附加衰减。
所以为了确保光缆中光纤在受到拉力时仍能保持传输参数的稳定,则必须引入一种新的承受拉力的材料——加强芯或称强度元件。
这种承受拉伸负荷的元件若放在缆芯中间则通常称加强芯或内铠元件,在护套内或缆芯周围就简称加强件。
当光缆受张力负荷时,按平行构件模型的受力原理,光纤的应变量与光缆的应变量是相等的。
在这种条件下,光缆中各元件承受的张力量由其元件的弹性模量与截面的乘积(EiAi)值来分配。
为了使光纤所承受的应力尽量减小,必须要求符合下列要求:即加强构件的EsAs值远远超过光纤的EfAf值。
(1)式中:Ei为光缆中各元件的杨氏模量;Ai为各元件的横截面积;Ef为光纤的杨氏模量;Af为光纤的横截面积;N为光缆中的光纤数目。
表1 加强构件材料的主要性能注:①温度范围:+5℃~+150℃;②温度范围:0℃~+100℃。
由于加强构件线膨胀系数与光纤的线膨胀系数不同,当外界温度条件变化时,光纤可能要产生纵向压缩应变,从而导致微弯衰耗的增加。
这样不同材料的热性会影响到光缆运行的温度范围和使用环境。
究其根源是因为光纤的线胀系数为1.8×10-6,而通常塑料的体胀系数10-4,即要大100倍以上。
要想获得良好的温度特性的最佳方法是选用低线胀系数的涂复层,例如:硅橡胶(10-5)和芳纶来做包层和加强件,这就是一种紧包室外光缆的典型结构。
图1所示为如何保证光纤传输参数稳定的与诸因素现象相互关系的图解。
图1 光缆中光纤衰减色散变化与诸因素、现象的关系要使光缆中的光纤不受力或少受力的基本方法有两大类:1)紧套:将体胀系数接近光纤的软材料包绞在光纤外以便吸收应力——俗称“沙发”原理。
2)松套:将光纤先套包在较硬的二次被复管内并留一定的余长(ExceededLength),简称EL,让光纤在空管中以自由正反螺旋悬浮着放置。
俗称“弹簧”原理。
合理、巧妙、精确的控制余长是光缆制造设计水平的重要体现。
获得余长的另一个途径就是围着加强件,扭绞。
余长设计是光缆制造的十分重要内容。
下面试以OPGW的光纤余长设计为例作一介绍。
图2 OPGW光纤余长设计示意图图1中的光纤在放入纵包焊接的不锈钢管内通常很难获得正值的余长,通常在该工序中还要填充冷油膏,所以可设定该工序后光纤在有一定张力条件下拉入钢管会有小量的负余长或零余长。
此时光纤长度略小于或等于钢管的长度。
正余长的获得主要靠巧妙排列辊轮的挤轧获得(例如为2‰),此时的余长是光纤相对于钢管而言的,即光纤要长于钢管2‰。
将钢管绞在外层时可获第二次的余长,这个余长是光纤相对于缆芯而言的。
在缆芯及OPGW上盘时都要有一定张力,在此张力下光缆(OPGW)受力伸长,而光纤则因有正余长而没受力,所以,相对于OPGW正余长值略有减小。
同理在敷设时也有少量余长减小。
OPGW架线后要张拉即用绷紧来减小弧垂。
该工序后余长减小值最大。
架设之后由于寒暑交变,余长自然也会变化,随着OPGW架设时间增长,由于蠕变作用余长还会减小。
20年后希望能保持有微小的正值(例如0.3‰)。
2.2保证在设计的工作寿命期内各种使用场合下机械性能可靠,耐环境性能稳定石英光纤是一种脆性的玻璃材料。
它的破断机理与金属、塑料等一般结构材料完全不同。
石英在自然界中往往是以结晶态的晶体出现。
石英光纤则是各向同性的无定形体。
在微观上来看它的表面布满各种深浅不同(通常是按韦帕尔规律分布)的格里弗斯裂纹。
光纤的断裂强度σ与表面最大缺陷深度的关系可用格里弗斯关系式表示: (2)式中:为几何尺寸常数;为临界应力强度因子。
当表面微裂纹的深度超过一定极限值时,光纤就会断裂。
这和用钻石刀划玻璃后稍微用力一弯就能获得整齐光滑的断面的原理是一样的。
影响光纤寿命的三个因素:提高光缆的寿命问题,最根本的是要提高光纤的寿命。
影响光纤寿命的原因主要有:1)光纤表面的微裂纹的存在和扩大;2)大气环境中的水和水蒸气分子对光纤表面的浸蚀;3)不合理的敷设光缆时残留下来的应力长期作用等。
由于上述原因,使得以石英玻璃为基础的光纤机械强度逐渐降低,衰耗慢慢增大,最后使光纤断裂,终止了光缆的寿命。
众所周知,在纤维表面上总是会存在着微裂纹,在大气环境中发生慢裂纹生长,使裂纹不断地扩大,使光纤的机械强度逐渐退化。
例如,一根125μm直径的裸石英光纤,经过3年以后的慢变化,使光纤的抗拉强度从180kpsi(相当于1530g抗拉强度),降到了60Kps i(相当于510g抗拉强度)。
光纤这种慢变化的降低机械强度的机理是:当光纤表面有微裂纹(或缺陷)时,在受到外来应力的作用,并不会立即断裂,只有施加应力达到裂纹的临界值时,纤维才会断裂。
而石英纤维承受到一个小于临界值的恒定应力时,表面裂纹会发生缓慢的扩大,使裂纹的深度达到断裂的临界值。
这就是纤维机械强度退化的过程。
石英光纤机械强度的退化是由于承受到的应力与大气环境中的水和水蒸气分子侵蚀的联合作用造成的。
裂纹末梢受到应力的化学键和水(H2O)发生化学反应如下:││││—Si—O—Si + H2O →—Si—OH + HO—Si— (3)││││这里生成了硅醇而使化学键断裂,而存在的水分子又进一步加强了裂纹末梢最邻近的那些化学键上的应力集中,并造成化学键的断裂。
这种应力与水的联合作用就是所谓的应力侵蚀或静态疲劳。
应力侵蚀造成裂纹扩大的速度V为: (2)式中:K—应力强度因子;A是裂纹扩展系数;n是疲劳参数,它是表征应力侵蚀的环境参数,也是唯一可以通过光纤涂复和光缆制造可改变的参数。
针对上述三大寿命因素,在制作光缆采取了三大措施:1.一次被复光纤的强度筛选,将一些已有很深裂纹区段的光纤通过连续强度筛选加以剔除,此举也可剔除由于制棒工艺缺陷而造成的气泡、夹杂等影响强度的薄弱点。
筛选张力视使用场合按可靠性概率设计给定,参见表2。
表2 国际上光纤强度筛选的一般规定2.光纤表面涂覆一层可防止水气侵蚀的一次被复,通常是涂紫外固化的丙烯酸树脂,亦可涂上一层有一定压缩应力的无机涂层,例如:TiO2、TiC等。
若光纤选用了密闭的无定形碳涂层或密闭的金属涂层则隔潮性更佳,光纤的疲劳参数(n)值可达100—300。
对于通用光缆n值>20的紫外固化涂层已经足够。
3.光缆结构工艺必需保证“零应力”,即无明显应变。
例如在YD/T901-2001光缆标准中规定光纤的应变不大于0.005%时可判为无明显应变。
氢损是指由于氢渗入纤芯引起1.38μm附近长波长衰减明显增长,在上世纪80年代曾一度成为光纤无法长期应用的巨大障碍。
它首先在将光纤密封在金属护套中的海缆中陆续发现,之后在各种陆上光缆中陆续也发现有类似的报道。
国内也曾出现误用析氢严重的填充油膏而成批光缆报废的“事件”。