编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。
函数pthread_create用来创建一个线程,它的原型为:extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr, void *(*__start_routine) (void *), void *__arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。
当创建线程成功时,函数返回0,若不为0则说明创建线程失败。
函数pthread_join用来等待一个线程的结束。
函数原型为:extern int pthread_join __P ((pthread_t __th, void **__thread_return)); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。
这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。
一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。
它的函数原型为:extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));最简单的线程程序:/* example.c*/#include <stdio.h>#include <pthread.h>void thread(void){int i;for(i=0;i<3;i++)printf("This is a pthread.\n");}int main(void){pthread_t id;int i,ret;ret=pthread_create(&id,NULL,(void *) thread,NULL);if(ret!=0){printf ("Create pthread error!\n");exit (1);}for(i=0;i<3;i++)printf("This is the main process.\n");pthread_join(id,NULL);return (0);}输出是什么样子?和进程相比,线程的最大优点之一是数据的共享性,各个进程共享父进程处沿袭的数据段,可以方便的获得、修改数据。
但这也给多线程编程带来了许多问题。
我们必须当心有多个不同的线程访问相同的变量。
许多函数是不可重入的,即同时不能运行一个函数的多个拷贝(除非使用不同的数据段)。
在函数中声明的静态变量常常带来问题,函数的返回值也会有问题。
因为如果返回的是函数内部静态声明的空间的地址,则在一个线程调用该函数得到地址后使用该地址指向的数据时,别的线程可能调用此函数并修改了这一段数据。
在进程中共享的变量必须用关键字volatile来定义,这是为了防止编译器在优化时(如gcc中使用-OX参数)改变它们的使用方式。
为了保护变量,我们必须使用信号量、互斥等方法来保证我们对变量的正确使用。
int square(volatile int *ptr){return *ptr * *ptr;}这个程序有什么错误?这段代码的目的是用来返指针*ptr指向值的平方,但是,由于*ptr指向一个volatile型参数,编译器将产生类似下面的代码:int square(volatile int *ptr){int a,b;a = *ptr;b = *ptr;return a * b;}由于*ptr的值可能被意想不到地改变,因此a和b可能是不同的。
结果,这段代码可能返不是你所期望的平方值!正确的代码如下:long square(volatile int *ptr){int a;a = *ptr;return a * a;}互斥锁用来保证一段时间内只有一个线程在执行一段代码。
必要性显而易见:假设各个线程向同一个文件顺序写入数据,最后得到的结果一定是灾难性的。
下面一段代码是一个读/写程序,它们公用一个缓冲区,并且我们假定一个缓冲区只能保存一条信息。
即缓冲区只有两个状态:有信息或没有信息。
void reader_function ( void );void writer_function ( void );char buffer;int buffer_has_item=0;pthread_mutex_t mutex;struct timespec delay;void main ( void ){pthread_t reader;/* 定义延迟时间*/_sec = 2;_nec = 0;/* 用默认属性初始化一个互斥锁对象*/pthread_mutex_init (&mutex,NULL);pthread_create(&reader, pthread_attr_default, (void *)&reader_function), NULL);writer_function( );}void writer_function (void){while(1){/* 锁定互斥锁*/pthread_mutex_lock (&mutex);if (buffer_has_item==0){buffer=make_new_item( );buffer_has_item=1;}/* 打开互斥锁*/pthread_mutex_unlock(&mutex);pthread_delay_np(&delay);}}读操作如何实现?void reader_function(void){while(1){pthread_mutex_lock(&mutex);if(buffer_has_item==1){consume_item(buffer);buffer_has_item=0;}pthread_mutex_unlock(&mutex);pthread_delay_np(&delay);}}信号量被用来控制对公共资源的访问。
当公共资源增加时,调用函数sem_post()增加信号量。
只有当信号量值大于0时,才能使用公共资源,使用后,函数sem_wait()减少信号量。
下面我们逐个介绍和信号量有关的一些函数,它们都在头文件/usr/include/semaphore.h中定义。
P: ??V: ??信号量的数据类型为结构sem_t,它本质上是一个长整型的数。
函数sem_init()用来初始化一个信号量。
它的原型为:extern int sem_init __P ((sem_t *__sem, int __pshared, unsigned int __value));sem为指向信号量结构的一个指针;pshared不为0时此信号量在进程间共享,否则只能为当前进程的所有线程共享;value给出了信号量的初始值。
函数sem_post( sem_t *sem )用来增加信号量的值。
当有线程阻塞在这个信号量上时,调用这个函数会使其中的一个线程不在阻塞,选择机制同样是由线程的调度策略决定的。
函数sem_wait( sem_t *sem )被用来阻塞当前线程直到信号量sem的值大于0,解除阻塞后将sem的值减一,表明公共资源经使用后减少。
函数sem_destroy(sem_t *sem)用来释放信号量sem。
下面我们来看一个使用信号量的例子。
在这个例子中,一共有4个线程,其中两个线程负责从文件读取数据到公共的缓冲区,另两个线程从缓冲区读取数据作不同的处理(加和乘运算)。
/* File sem.c */#include <stdio.h>#include <pthread.h>#include <semaphore.h>#define MAXSTACK 100int stack[MAXSTACK][2];int size=0;sem_t sem;/* 从文件1.dat读取数据,每读一次,信号量加一*/ void ReadData1(void){FILE *fp=fopen("1.dat","r");while(!feof(fp)){fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]);sem_post(&sem);++size;}fclose(fp);}/*从文件2.dat读取数据*/void ReadData2(void){FILE *fp=fopen("2.dat","r");while(!feof(fp)){fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]);sem_post(&sem);++size;}fclose(fp);}/*阻塞等待缓冲区有数据,读取数据后,释放空间,继续等待*/void HandleData1(void){while(1){sem_wait(&sem);printf("Plus:%d+%d=%d\n",stack[size][0],stack[size][1],st ack[size][0]+stack[size][1]);--size;}}void HandleData2(void){while(1){sem_wait(&sem);printf("Multiply:%d*%d=%d\n",stack[size][0],stack[size][ 1],stack[size][0]*stack[size][1]);--size;}}int main(void){pthread_t t1,t2,t3,t4;sem_init(&sem,0,0);pthread_create(&t1,NULL,(void *)HandleData1,NULL);pthread_create(&t2,NULL,(void *)HandleData2,NULL);pthread_create(&t3,NULL,(void *)ReadData1,NULL);pthread_create(&t4,NULL,(void *)ReadData2,NULL);/* 防止程序过早退出,让它在此无限期等待*/pthread_join(t1,NULL);}生产者-消费者?使用pthread在线程之间实现。