周期函数通俗定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT (k∈Z且k≠0)都是它的周期。
严格定义设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f (x+T)=f(x);则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。
如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
正弦函数图象编辑本段周期函数性质⑴若T(≠0)是f(X)的周期,则-T也是f(X)的周期。
⑵若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。
⑶若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。
⑷若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。
⑸若T1、T2是f(X)的两个周期,且是无理数,则f(X)不存在最小正周期⑹若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。
⑺周期函数f(X)的定义域M必定是至少一方无界的集合。
编辑本段判定定理1若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。
[1]证:∵T*是f(X)的周期,∴对有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C,∴K f(X)+C也是M上以T*为周期的周期函数。
假设T* 不是Kf(X)+C的最小正周期,则必存在T’(0<T’<T*)是K f(X)+C的周期,则对,有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X),∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C 的最小正周期。
同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。
定理2若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ n }上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。
证:先证是f(ax+b)的周期∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X)+b=ax+b ±T*∈M,且f[a(X+ T)+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。
再证是f(ax+b)的最小正周期假设存在T’(0<T’<;)是f(ax+b)的周期,则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b),因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数,∴aT’是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。
定理3设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。
证:设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x)∴f(g(x+T))=f(g(x))∴=f(g(x))是M1上的周期函数。
例1设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。
同理可得:⑴f(X)=Sin(cosx),⑵f(X)=Sin(tgx),⑶f(X)=Sin2x,⑷f(n)=Log2Sinx(sinx>0)也都是周期函数。
例2f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。
例3f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。
证:假设cos 是周期函数,则存在T>0使cos (k∈Z)与定义中T是与X无关的常数矛盾,∴cos 不是周期函数。
由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。
定理4设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。
证:设((p·q)=1)设T=T1q=T2p则有:有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。
同理可证:f1(X) 、f2(X)是以T为周期的周期函数。
定理4推论设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn 分别是它们的周期,若,… (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。
例4f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍数2π为周期的周期函数。
例5讨论f(X)= 的周期性解:2tg3 是以T1= 为最小正周期的周期函数。
5tg 是以T2 为最小正周期的周期函数。
tg2 是以T3= 为最小正周期的周期函数。
又都是有理数∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。
同理可证:⑴f(X)=cos ;⑵f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。
是周期函数。
定理5设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。
证先证充分性:若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又∈Q由定理4可得f1(x)与f2(x)之和、差、积是周期函数。
再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。
⑴设sina1x-cosa2x为周期函数,则必存在常数T>0,使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+)sin = -2sins(a2x+) sin ⑴。
令x= 得2cos(a1x+),则(K∈Z)。
⑵或C∈Z⑶又在⑴中令 2sin(a2x+)sin =-2sin =0由⑷由sin ⑸由上述⑵与⑶,⑷与⑸都分别至少有一个成立。
由⑶、(5得)⑹∴无论⑵、⑷、⑹中那一式成立都有a1/a2。
⑵设sinaxcosa2x为周期函数,则是周期函数。
编辑本段非周期函数的判定[1]⑴若f(X)的定义域有界例:f(X)=cosx(≤10)不是周期函数。
⑵根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
例:f(X)=cos 是非周期函数。
⑶一般用反证法证明。
(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
例:证f(X)=ax+b(a≠0)是非周期函数。
证:假设f(X)=ax+b是周期函数,则存在T(≠0),使对,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
例:证f(X)= 是非周期函数。
证:假设f(X)是周期函数,则必存在T(≠0)对,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
例:证f(X)=sinx2是非周期函数证:若f(X)= sinx2是周期函数,则存在T(>0),使对,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T 有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。
复合函数目录依y=f(u),μ=φ(x)的增减性决定。
即“增增得增,减减得增,增减得减”,可以简化为“同增异减”判断复合函数的单调性的步骤如下:⑴求复合函数定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。
例如:讨论函数y=0.8^(x^2-4x+3)的单调性。
复合函数的导数解:函数定义域为R。
令u=x^2-4x+3,y=0.8^u。
指数函数y=0.8^u在(-∞,+∞)上是减函数,u=x^2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴函数y=0.8^(x2-4x+3)在(-∞,2]上是增函数,在[2,+∞)上是减函数。
利用复合函数求参数取值范围求参数的取值范围是一类重要问题,解题关键是建立关于这个参数的不等式组,必须将已知的所有条件加以转化。
求导复合函数求导的前提:复合函数本身及所含函数都可导法则1:设u=g(x)f'(x)=f'(u)*g'(x)法则2:设u=g(x),a=p(u)f'(x)=f'(a)*p'(u)*g'(x)例如:1、求:函数f(x)=(3x+2)^3+3的导数设u=g(x)=3x+2f(u)=u^3+3f'(u)=3u^2=3(3x+2)^2g'(x)=3f'(x)=f'(u)*g'(x)=3(3x+2)^2*3=9(3x+2)^22、求f(x)=√[(x-4)^2+25]的导数设u=g(x)=x-4,a=p(u)=u^2+25f(a)=√af'(a)=1/(2√a)=1/{2√[(x-4)^2+25]}p'(u)=2u=2(x-4)g'(x)=1f'(x)=f'(a)*p'(u)*g'(x)=2(x-4)/{2√[(x-4)^2+25]}=(x-4)/√[(x-4)^2+25]目录定义分段函数;对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.类型1、分界点左右的数学表达式一样,但单独定义分界点处的函数值(例1)2、分界点左右的数学表达式不一样(例2)例子例1 某商场举办有奖购物活动,每购100元商品得到一张奖券,每1000张奖券为一组,编号为1号至1000号,其中只有一张中特等奖,特等奖金额5000元,开奖时,中特等奖号码为328号,那么,一张奖券所得特等奖金y元与号码x号的函数关系表示为0 ,x≠328y={ 5000, x=328例2 某商店卖西瓜,一个西瓜的重量若在4kg以下,则销售价格为0.6元/kg;若在4kg 或4kg 以上,则销售价格为0.8元/kg,那么,一个西瓜的销售收入y元与重量xkg的函数关系表示为0.6x 0〈x〈4y={ 0.8x, x≥4分段函数题型由于课本没有明确给出分段函数的定义,只以例题的形式出现,不少学生对它认识肤浅模糊,以致学生解题常常出错。